
Running Stream-like Programs
on Heterogeneous

Multi-core Systems

Paul Carpenter

Advisor: Eduard Ayguade
Co-advisor: Alex Ramirez

Computer Architecture Department

Universitat Politècnica de Catalunya

A thesis submitted for the degree of

Doctor of Philosophy

UPCShield.eps
mailto:paul.carpenter@acm.org
mailto:eduade.ayguade@bsc.es
mailto:alex.ramirez@bsc.es
http://www.ac.upc.edu
http://www.ac.upc.edu

ACTA DE QUALIFICACIÓ DE LA TESI DOCTORAL

Reunit el tribunal integrat pels sota signants per jutjar la tesi doctoral:

Tı́tol de la tesi: Running Stream-like Programs on Heterogeneous Multi-core Systems
Autor de la tesi: Paul Carpenter

Acorda atorgar la qualificació de:

� No apte
� Aprovat
� Notable
� Excel·lent
� Excel·lent Cum Laude

Barcelona, de/d’ . de

El President El Secretari

. .
(nom i cognoms) (nom i cognoms)

El vocal El vocal El vocal

. .
(nom i cognoms) (nom i cognoms) (nom i cognoms)

Abstract

All major semiconductor companies are now shipping multi-cores. Phones, PCs,
laptops, and mobile internet devices will all require software that can make ef-
fective use of these cores. Writing high-performance parallel software is difficult,
time-consuming and error prone, increasing both time-to-market and cost. Soft-
ware outlives hardware; it typically takes longer to develop new software than
hardware, and legacy software tends to survive for a long time, during which the
number of cores per system will increase. Development and maintenance produc-
tivity will be improved if parallelism and technical details are managed by the
machine, while the programmer reasons about the application as a whole.

Parallel software should be written using domain-specific high-level languages or
extensions. These languages reveal implicit parallelism, which would be obscured
by a sequential language such as C. When memory allocation and program control
are managed by the compiler, the program’s structure and data layout can be
safely and reliably modified by high-level compiler transformations.

One important application domain contains so-called stream programs, which
are structured as independent kernels interacting only through one-way chan-
nels, called streams. Stream programming is not applicable to all programs,
but it arises naturally in audio and video encode and decode, 3D graphics, and
digital signal processing. This representation enables high-level transformations,
including kernel unrolling and kernel fusion.

Kernel unrolling coarsens granularity by batching up work into larger chunks,
reducing overheads and potentially enabling data reuse and vectorisation. Ker-
nel fusion combines multiple kernels into a single piece of code, which has two
benefits. First, it can be used to match the number of kernels to the number of
processors, required for static scheduling. Second, it coarsens granularity, which
amortises overhead in a dynamic scheduler. Kernel unrolling and fusion are rel-
atively straightforward to apply when the program is represented as a stream
graph, even though they imply extensive changes to memory allocation and pro-
gram control.

This thesis develops new compiler and run-time techniques for stream program-
ming. The first part of the thesis is concerned with a statically scheduled stream
compiler. It introduces a new static partitioning algorithm, which determines
which kernels should be fused, in order to balance the loads on the processors
and interconnects. A good partitioning algorithm is crucial if the compiler is to
produce efficient code. The algorithm also takes account of downstream compiler
passes—specifically software pipelining and buffer allocation—and it models the

compiler’s ability to fuse kernels. The latter is important because the compiler
may not be able to fuse arbitrary collections of kernels.

This thesis also introduces a static queue sizing algorithm. This algorithm is
important when memory is distributed, especially when local stores are small.
The algorithm takes account of latencies and variations in computation time,
and is constrained by the sizes of the local memories.

The second part of this thesis is concerned with dynamic scheduling of stream pro-
grams. First, it investigates the performance of known online, non-preemptive,
non-clairvoyant dynamic schedulers. Second, it proposes two dynamic schedulers
for stream programs. The first is specifically for one-dimensional stream pro-
grams. The second is more general: it does not need to be told the stream graph,
but it has slightly larger overhead.

This thesis also introduces some support tools related to stream programming.
StarssCheck is a debugging tool, based on Valgrind, for the StarSs task-parallel
programming language. It generates a warning whenever the program’s be-
haviour contradicts a pragma annotation. Such behaviour could otherwise lead to
exceptions or race conditions. StreamIt to OmpSs is a tool to convert a stream-
ing program in the StreamIt language into a dynamically scheduled task based
program using StarSs.

The main contributions of this thesis are:� The Abstract Streaming Machine (ASM), a machine model and coarse-grain
simulator for a statically scheduled stream compiler.� A new partitioning heuristic for stream programs, which balances the load
across the target, including processors and communication links. It consid-
ers its effect on downstream passes, and it models the compiler’s ability to
fuse kernels.� Two static queue sizing algorithms for stream programs, which determine
the sizes of the buffers used to implement streams. The optimal buffer
sizes are affected by latency and variability in computation costs, and are
constrained by the sizes of local memories, which may be small.� Two new low-complexity adaptive dynamic scheduling algorithms for stream-
like programs.� StarssCheck, a debugging tool for StarSs. This tool checks memory accesses
performed by tasks and the main thread, and warns if the StarSs pragmas
are incorrect.

Acknowledgements

First and foremost, I would like to thank my advisor, Eduard Ayguade, and co-
advisor, Alex Ramirez. This dissertation could not have been written without
their patient guidance throughout. They gave me the freedom to try my own
ideas and make my own mistakes, while gently steering me in the right direction
when necessary. Alex knows how to take a vague idea, make it real, evaluate it,
and produce a clear and compelling set of contributions. He persuaded me to
stop describing my work with words like simple and obvious. Eduard had the
experience and clarity to make sure I was steadily advancing in the right direction.
Both were remarkably generous with their time, and they made research an
enjoyable and fulfilling experience.

I am indebted to the Barcelona Supercomputing Center under the warm leader-
ship of Mateo Valero. The BSC supported this work by providing a friendly and
productive working environment, access to resources and projects, and financial
support. Thanks to all the administrative staff, especially Trini Carneros at UPC
DAC, who put up with my difficulty in performing even the most undemanding
of administrative tasks.

I would like to thank the funding bodies that enabled this work to take place:
the Spanish Ministry of Science and Innovation (contract no. TIN2007-60625),
the European Commission in the context of the ACOTES project (contract no.
IST-34869), ENCORE project (ICT-FP7-248647), and the HiPEAC Network of
Excellence (contract nos. IST-004408 and FP7/ICT 217068).

I wish to thank my parents, who have always been there for me. They always
believed that everyone should have a passion for something and the opportunity
to make their passion into their career. They bought my first computer, a Texas
Instruments TI-99/4A, when I was aged eight. They continued to support my
interests in science and computing, and my brother’s interests in animal medicine
and surgery. Now, both their sons are doing what they enjoy.

Finally, I wish to express my warmest thanks to Anja and our two young sons,
Ruben and Daniel. Anja has an extraordinary ability to help others grow. She
takes an interest in people, and she gives them the push to send that email, or
make that call. She was instrumental in my move from successful professional
to graduate student, and she has supported me in uncountable ways while I was
writing this dissertation. Every day, Anja and my sons show me what is most
important in life.

vi

Contents

1 Introduction 1

1.1 Approaches to parallelism . 3

1.1.1 Data parallelism . 3

1.1.2 Task-level parallelism . 5

1.1.3 Streaming parallelism . 6

1.2 Compile-time vs run-time decisions . 7

1.3 The ACOTES stream compiler . 8

1.4 Task-level languages . 9

1.4.1 StarSs and OmpSs . 9

1.5 Streaming languages . 12

1.5.1 StreamIt language . 12

1.5.2 SPM (Stream Programming Model) 16

1.6 Tool flow and support tools . 17

1.6.1 Debugging using StarssCheck . 18

1.6.2 Performance visualisation . 18

1.6.3 StreamIt to OmpSs . 18

1.7 Contributions and publications . 19

1.8 Thesis outline . 20

2 Abstract Streaming Machine 23

2.1 Scope of the ASM . 23

2.2 ASM Machine Description . 26

2.3 ASM Program Description . 28

2.4 Platform characterisation . 32

2.5 Validation of the ASM . 35

2.6 Using the ASM . 38

2.6.1 Static partitioning . 38

2.6.2 Static buffer sizing . 39

2.7 Related work . 39

3 Compile-time Decisions 41

3.1 Motivation . 41

3.1.1 Convexity . 42

3.1.2 Connectivity . 44

3.1.3 Queue sizes . 45

vii

CONTENTS

3.2 Static partitioning . 48
3.2.1 The partitioning problem . 48
3.2.2 The partitioning algorithm . 50
3.2.3 Evaluation . 54

3.3 Static buffer sizing . 58
3.3.1 The buffer sizing problem . 58
3.3.2 The buffer sizing algorithm . 59
3.3.3 Evaluation . 64

3.4 Related work . 65
3.5 Conclusions . 68

4 Run-time Decisions 69
4.1 The dynamic scheduling problem . 70

4.1.1 Interface to the dynamic scheduler . 70
4.1.2 Throttle policy . 71
4.1.3 Objective function: comparing schedulers 72

4.2 Survey of DAG scheduling techniques . 72
4.2.1 The online scheduling policies . 73
4.2.2 Theoretical evaluation . 76

4.3 Adaptive schedulers . 81
4.3.1 Intuition . 81
4.3.2 Monitoring . 83
4.3.3 Updating priorities for apriority . 84
4.3.4 Updating priorities for gpriority . 85

4.4 Experimental evaluation . 88
4.5 Conclusions . 93

5 Support Tools 97
5.1 Debugging using StarssCheck . 97

5.1.1 Common StarSs errors . 98
5.1.2 How StarssCheck works . 99
5.1.3 Evaluation . 103
5.1.4 Related work . 106

5.2 Performance visualisation using Paraver Animator 107
5.3 StreamIt to OmpSs conversion . 108

5.3.1 The conversion process . 109
5.3.2 Example: simplified FM Radio . 112
5.3.3 Current limitations . 115
5.3.4 High level transformations . 117

6 Conclusions 121

Glossary 123

Bibliography 125

Index 137

viii

List of Figures

1.1 Metrics for Intel processors . 2

1.2 Data parallelism: four cores updating an array of data 4

1.3 Gantt chart illustrating task-level parallelism 4

1.4 Streaming parallelism: GNU radio FM demodulation 4

1.5 The ACOTES iterative stream compiler . 9

1.6 Example StarSs code (bmod function) . 10

1.7 Extracts from StarSs code for Cholesky decomposition 11

1.8 Dependency graphs for Cholesky decomposition 11

1.9 StreamIt components: pipelines, splitjoins, and feedback loops 13

1.10 Example StreamIt 2.1 program, based on FMRadio5 14

1.11 Stream graph for the example StreamIt 2.1 program 15

1.12 Example SPM program from [M+11] . 16

1.13 Tool flow used in this thesis . 17

1.14 Thesis structure . 21

1.15 Timeline . 22

2.1 The ACOTES iterative stream compiler, reproduced from Figure 1.5 24

2.2 Topology of three example targets . 25

2.3 Processor and interconnect parameters of the ASM and example values . . . 27

2.4 Memory parameters of the ASM and values for two example targets 28

2.5 Cost and latency of communication between tasks 29

2.6 Building tasks from subtasks . 30

2.7 Example stream program with data-dependent flow 31

2.8 Representation of data-dependent flow between tasks and subtasks 32

2.9 Synthetic stream benchmarks . 33

2.10 Results for producer-consumer benchmark on Cell B.E. 33

2.11 Time per iteration for the chain and chain2 benchmarks on Cell B.E. 34

2.12 Comparison of real and simulated traces . 36

2.13 Detail on the main phases in the search algorithm 38

2.14 Memory constraint graph for the Cell Broadband Engine 39

3.1 Example partitions of the StreamIt filterbank benchmark onto a 3-core SMP 42

3.2 Traces for five iterations of filterbank, scheduled using SGMS 43

3.3 Motivation of connectivity . 45

3.4 If k2 and k3 are fused into one task, then the entire graph must be fused . . . 45

ix

LIST OF FIGURES

3.5 Effect of consumer queue length on chain8 and producer-consumer 47

3.6 Memory-performance tradeoff . 48

3.7 The mapping phase of the ACOTES compiler 49

3.8 Topology of the targets used in this section 50

3.9 First level partition in the initial partition algorithm 51

3.10 Convergence of the refinement phase as a function of the number of iterations 55

3.11 Normalised execution time for the StreamIt 2.1.1 benchmarks for the three
variants of the heuristic algorithm . 55

3.12 Vocoder benchmark on SMP 3 with accelerator using software pipelining. . . 57

3.13 Memory constraint graph for the Cell Broadband Engine 58

3.14 Example timed event graph used by the critical cycle algorithm 59

3.15 Example weighted wait-for graphs . 60

3.16 Example where baseline fails . 62

3.17 Token algorithm: bichain4 example . 63

3.18 Comparison of the buffer size update and cycle detection algorithms 66

4.1 Example traces with static and dynamic scheduling 70

4.2 Dynamic scheduler in context . 71

4.3 Number of ready tasks: channelvocoder, using oldest-first 72

4.4 Metrics used by the scheduling policies . 73

4.5 Lattice of ready queues for a heuristic . 75

4.6 Worst case examples for exhaustion . 77

4.7 Worst case examples for back pressure . 78

4.8 Illustration for oldest back pressure . 80

4.9 Motivation for busyness statistic . 82

4.10 Example statistics after three iterations . 83

4.11 Example showing why all kernel statistics should be reset 85

4.12 Example that shows the benefit from updating the ancestors 86

4.13 Kernel dependency graph for H.264 decoder skeleton 88

4.14 Scalability of the benchmarks . 90

4.15 Average and worst case results . 92

4.16 Worst case results: detail of efficiency of most robust schedulers 93

4.17 Comparison of the scheduling heuristics: StreamIt 94

4.18 Comparison of the scheduling heuristics: non-StreamIt 95

5.1 Example mistakes found by StarssCheck . 100

5.2 Structure of StarssCheck . 100

5.3 Translated version of the bmod function from Figure 1.6 101

5.4 Starssgrind Contexts . 102

5.5 VEX IR for a single store instruction . 103

5.6 Performance results for Sparse LU factorisation 103

5.7 Worst case “nasty” benchmark . 105

5.8 Potential false negatives and false positives 106

5.9 Three instants during the execution of the H.264 decoder on 25 processors . . 107

5.10 Main phases in StreamIt to OmpSs conversion 109

5.11 Output from the build program . 110

x

LIST OF FIGURES

5.12 Translation of an example StreamIt function 111
5.13 Various FIFOs . 111
5.14 Non-peek version of the example StreamIt 2.1 program in Figure 1.10 113
5.15 Translated code exactly as generated by str2oss: part 1 114
5.16 Translated code exactly as generated by str2oss: part 2 115
5.17 Example str2oss control file . 116
5.18 An example where str2oss generates a function with too many arguments . . 119

xi

LIST OF FIGURES

xii

List of Tables

1.1 Selection of task parallel languages and libraries 5
1.2 Selection of stream programming languages 6

2.1 Kernels and mappings of the GNU radio benchmark 37

3.1 The number of pipeline stages . 56

4.1 Known DAG scheduling heuristics . 73
4.2 Online scheduling policies and cost . 74
4.3 Throughput for one-dimensional stream programs 76
4.4 Statistics for adaptive schedulers . 83
4.5 Benchmarks used in the evaluation . 89

5.1 StarssCheck client requests . 101
5.2 Translation statistics for StreamIt benchmarks 120

xiii

LIST OF TABLES

xiv

Chapter 1

Introduction

All major semiconductor companies are now shipping multi-cores. Phones, PCs, laptops, and
mobile internet devices already contain multiple processors instead of just one, and will re-
quire software that uses an increasing number of them effectively. Writing high-performance
parallel software is difficult, time-consuming and error prone, increasing both development
time and cost. Software outlives hardware; it typically takes longer to develop new soft-
ware than hardware, and legacy software tends to survive for a long time, during which the
number of cores per system will increase. Development and maintenance productivity will
be improved if parallelism and technical details are managed by the machine, so that the
programmer can concentrate on the application as a whole.

This thesis develops techniques to automatically map a certain class of program, known
as stream programs, to multiple processors. Stream programs are significant subcomponents
of many important applications, including those involving audio and video encoding and
decoding, software radio, and 3D graphics. Moreover, due to their modularity and regu-
larity, they ought to work well on multiple processors. In addition to investigating how to
automatically map stream programs to multi-processors, this thesis introduces some tools
that can be used to find bugs and improve performance.

Putting multiple CPUs into the same system is by no means new. The Burroughs D825
was the first Symmetric Multiprocessor; it had four processors, and it was launched in
1962 [AHSW62]. What is new, however, is that mainstream computing is currently being
forced into multiprocessing. There are, in general, three ways through which computers
become faster. First, transistors have been getting faster and smaller at an exponential
rate, so last year’s design, on today’s semiconductor process, will be faster.1 Second, smaller
transistors give more room for complicated mechanisms to speed up a single processor, either
through increasing the clock rate by overlapping instructions in a pipeline, or through super-
scalar issue, by doing several unrelated instructions at once [HP07]. Both these techniques
are limited, however, by excessive power consumption [OH05]. Third, an effective way to
use an increasing number of transistors is to have on the same chip, several processors.

Figure 1.1 illustrates these trends, using data for Intel processors. Figure 1.1(a) shows
that the total number of transistors has been doubling roughly every two years, consistently
for about forty years, and that the trend is continuing still. Figure 1.1 (b) shows that clock

1The various parts of the semiconductor industry have been coordinating their capital and research
investments through Moore’s law [Moo65], shown in Figure 1.1.

1

1. INTRODUCTION

1970 1980 1990 2000 2010

0.
01

1.
00

10
0.

00

Year of introduction

N
um

be
r

of
 tr

an
si

st
or

s
(m

ill
io

ns
)

+
+

+ +

+ +

+
+

++++
+

+

+ +
+

+
+

+
+

+
+

+
+
+

+ +
+

4004

8086
80186

80386DX

Pentium−P5

Pentium−IV

Core2−Duo

Core−i7

+ Intel microprocessors
Moore’s law

1970 1980 1990 2000 2010
0.

5
5.

0
50

.0
50

0.
0

50
00

.0

Year of introduction

F
re

qu
en

cy
 (

M
H

z)
+

+

+
+

+
+

+

+
+

+
++

+
+

+ +
+ +

+
+

+ ++2224 4
6

4004

8086
80186

80386DX
Pentium−P5

Pentium−IV

Core−i7

+
2
4
6

One core
Two cores
Four cores
Six cores

(a) Number of transistors
(b) Frequency (MHz) and
number of processor cores

Figure 1.1: Metrics for Intel processors, using a logarithmic y axis

frequency has been doubling roughly every three years, but that the trend has flattened in
recent years, with transistors instead being used for multiple processor cores. Multiprocessing
has been common in embedded systems and standard in supercomputing for many years,
the former for power consumption and specialisation1 and to isolate subsystems from each
other, and the latter because it is the only way to get the necessary performance. All
supercomputers in the biannual TOP500 ranking [TOP] have had two or more processors
ever since 1997, and the average number of processor cores in the machines in the November
2010 list is about 13,000.2

Multiple processors are pointless if they are not all kept busy, ignoring the benefits
from specialisation for now; and they need to run, in parallel, on their own relatively large
pieces of work. It is hard to write programs that do this. The first reason is that many
computations, like many human activities, cannot easily be broken up into parts that can
be done at the same time. An example is shown later in this section, in Figure 1.8(a). One
way to find parallelism in such a program is to use a different algorithm. Another way is to
use speculation to exploit the parallelism that exists but is hard to describe.

The second reason is that, with some exceptions, breaking a single program into parts
and managing their execution in parallel currently has to be done by the programmer. More-
over, doing so exposes some unpleasant technicalities [Lee06]: primarily, the need to lock
data structures so two threads don’t try to change the same data at the same time and mess
it up, and weak memory consistency, where interactions between processors reveal that

1An example is the TI OMAP1 series, containing a TI DSP for signal processing and an ARM core for
applications, and benefiting from lower power consumption through specialisation [CCG+00].

2The average could be criticised since it is dominated by the top few machines, but it is less dependent
on the arbitrary number “500”. The most cores is 294,912 and the median is 6,372.

2

Introduction/moores-law.eps
Introduction/moores-freq.eps

1.1 Approaches to parallelism

they are not the sequential machines they pretend to be [AG02]. The programmer must
manage all this, while also presumably thinking about the big picture, in terms of what the
application is ultimately trying to do. Interactions between multiple processors are inher-
ently non-deterministic, because the program’s behaviour can depend on the precise timing.
Many bugs will therefore happen intermittently, and be difficult to reproduce, diagnose, and
fix.

1.1 Approaches to parallelism

The parallelism that exists in software often has some kind of structure. A parallel program-
ming model is a way for the application programmer to reveal this structure to the machine.
The machine should then assign work to processors and deal with technicalities, allowing the
programmer to concentrate on whatever the program is trying to achieve, which is probably
also rather challenging. The main benefits are a shorter development time and lower cost,
similar to the advantages of higher-level languages such as C or Python, compared with
assembly language.

This thesis uses the three types of parallelism described in the following subsections.

1.1.1 Data parallelism

Data parallelism [HS86] exists when the same operation has to be done, independently and
many times over, on a large amount of data. Examples are doubling every entry in a
large table of numbers and finding the sum of a list of values. The latter is an example of a
reduction, the bulk of which is data parallel, if the sum is broken into parts using associativity
of addition. Data parallelism can be found in linear algebra, manipulating vectors and
matrices, and many scientific applications, including modelling physics and predicting the
weather.

Data parallel operations can be distributed across multiple processors quite easily, con-
ceptually at least, as illustrated in Figure 1.2. Crucially, the allocation of work to processors
is done by the machine, rather than the programmer. At the small scale, data parallelism
can also be exploited within a single instruction, using SIMD instructions,1 such as those in
Intel MMX and SSE, IBM/Motorola AltiVec, and ARM NEON.

Data parallel programs can be written in languages such as OpenMP [Org08] and High-
Performance Fortran (HPF) [HPFF93; HPFF97]. OpenCL [Khr10] and CUDA [NVI08]
support data parallelism on GPUs. Google’s MapReduce [DG08] is a form of data parallelism
at the large scale.

An alternative is to have the machine look for data parallelism in an ordinary sequential
program. If a sequence of similar operations, in a loop, and supposedly to be done in order,
do not depend on each other, then they can be done in parallel, and the result will be
the same. The earliest work on data dependence analysis dates back to the 1970s [Lam74;
KM+72; Mur71], and a considerable amount of research has been done since then [AK02].

1Single Instruction Multiple Data

3

1. INTRODUCTION

Processor 1 Processor 2

Processor 3 Processor 4

Figure 1.2: Data parallelism: four cores updating an array of data

Time

Task 1

Task 4

Task 7

Task 10

Task 13

Task 16

Task 19

Figure 1.3: Gantt chart illustrating task-level parallelism

Demodulation

407-tap FIR
Lowpass (m)

407-tap FIR
Bandpass

813-tap FIR
Carrier recovery

Frequency
shift

407-tap FIR
Lowpass (s)

Sum

Input

x

Output

l

r

Figure 1.4: Streaming parallelism: GNU radio FM demodulation

4

Introduction/excel_numbers.eps
Introduction/data_parallelism.eps
Introduction/cholesky-gantt.eps
Introduction/gnuradio.eps

1.1 Approaches to parallelism

Language Year† Nesting Dependencies

Cilk [BJK+95] 1995 Yes Parent can wait for children
pthreads [iee99] 1995 Yes Shared data and locks
High Performance Fortran (HPF) 2.0 [HPFF97] 1997 Yes Yes

Jade [RSL02] 2002 Yes General DAG1

StarSs [SP09; BPBL06; PBL08] 2004‡ Yes General DAG
Sequoia [FHK+06] 2006 Yes Parent waits for children

Intel Threading Building Blocks [Rei] 2007 Yes General in Version 3 Update 5
OpenMP 3.0 [Ope09] 2008 Yes Parent can wait for children
Task Parallel Library (TPL) [LSB09] 2009 Yes General DAG using futures

StarPU [ATNW09; ATN10] 2009 No General DAG using tags
OpenCL 1.1[Khr10] 2010 No General DAG
OoOJava [JED10] 2010 Yes General DAG from static analysis

Tagged Procedure Calls (TPC)[TKA+10] 2010 No Master can wait for tasks
Apple Grand Central Dispatch [App] 2010 Yes Tasks can wait for other tasks
Intel Cilk Plus [Int10] 2010 Yes Parent can wait for children

† Date of first significant publication
‡ GridSs

Table 1.1: Selection of task parallel languages and libraries

1.1.2 Task-level parallelism

Another way to write parallel programs, known as task-level parallelism, is to have one
thread, running on one processor, delegate self-contained pieces of work, known as tasks, to
a pool of interchangeable workers. The workers are normally threads running on different
processors. This is easy for people to understand because it resembles concurrency in the
real world, and it can be very efficient. Figure 1.3 illustrates task-level parallelism using a
Gantt chart.

One of the earliest task-level programming languages is Cilk [BJK+95]. In a Cilk program,
any thread may spawn children, which potentially run in parallel with their parent. If a
parent needs some value computed by one of its children, then it should first wait for its
children to complete. There can be no dependencies between children; i.e. one child cannot
wait for another child to finish, but parallelism can be nested, meaning that children can
have children of their own.

In this thesis, task parallelism will be defined using StarSs [SP09; BPBL06; PBL08],
which will be described briefly in Section 1.4.1. StarSs supports dependencies between tasks:
one task may be dependent on the outputs from other tasks, its predecessors, meaning that
it cannot start until they have finished.

Table 1.1 lists some other languages and libraries for task parallelism, including OpenMP
3.0 [Ope09], TPL (Task Parallel Library) [LSB09] for .NET, Apple’s Grand Central Dis-
patch [App] in Mac OS X 10.6, and Intel Threading Building Blocks [Rei]. Task parallel
programming is also used for specific applications; for example dense linear algebra in the
PLASMA [Uni09] and FLAME [FLA10] projects. MPI Microtask [OIS+06] for the Cell
B.E. breaks a message-passing program into non-blocking units of computation, which are
dynamically scheduled as tasks.

5

1. INTRODUCTION

Language Year† Graph structure Dimensions

Gedae [LBS] 1987 General directed graph One-dimensional
Gabriel [BGH+90] 1990 General directed graph One-dimensional
Ptolemy II [EJL+03] 2003 General directed graph One-dimensional

StreamIt [TKA02; CAG06] 2001 Series-parallel One-dimensional
StreamC/KernelC [Mat02] 2002 General directed graph One-dimensional
DataCutter [BKSS02] 2002 General directed graph One-dimensional

Brook [Buc03] 2003 General directed graph Multi-dimensional
S-Net [GSS06] 2006 Series-parallel One-dimensional
SPM [CRM+07; ACO08] 2007 General DAG One-dimensional

Fractal [MRC+07] 2007 General directed graph Multi-dimensional
XStream [GMN+08] 2008 General DAG One-dimensional
GRAMPS [SFB+09] 2009 General directed graph One-dimensional

IBM InfoSphere SPL [IBM11] 2009 General directed graph One-dimensional
DUP [GGR+10] 2010 General directed graph One-dimensional

† Date of first significant publication

Table 1.2: Selection of stream programming languages

1.1.3 Streaming parallelism

Another, more specialised, way to write parallel programs is known as streaming parallelism.
Unlike data and task parallelism, which are applicable to many different types of problem,
streaming parallelism is domain-specific. Domain-specific languages (DSLs) have long been
used to improve productivity. They let the program be described at a higher level, although
they lack the generality of a general purpose language such as C. For example, Matlab is
for scientific computing, and YACC is for writing parsers of context-free grammars. Other
examples include BPEL, Make, Excel, SQL, and DiSTil [SB97; VDKV00].

There has recently been considerable interest in the use of domain-specific languages for
parallelism. The high-level description reveals implicit parallelism, which would be obscured
by a sequential language such as C [DYDS+10; CSB+11]. Examples of domain-specific
languages that expose implicit parallelism include Make, OpenGL [Khr] and SQL [CHM95].

Stream programming is suitable for applications that deal with long sequences of data;
these sequences are known as streams. Streams arise naturally in time-domain digital signal
processing, where the streams are discrete-time signals, and 3D graphics, where the streams
are long sequences of vertices and triangles. The objective is usually to maximise throughput,
or to reduce power or energy consumption for a given throughput. These applications can
usually tolerate a large latency compared with the rate at which data arrives.

It is either impossible or impractical to store the entire streams, so computation is done
online, on local subsets of the data. Computation is done inside kernels, which communi-
cate in one direction, from producer to consumer, through the streams. In digital signal
processing, many of the kernels are digital filters. This representation exposes modularity
and regularity to the compiler, enabling the compiler transformations discussed below. It
is easy to understand stream programming because it is also like concurrency in the real

1Directed acyclic graph

6

1.2 Compile-time vs run-time decisions

world: a new gadget is being produced at the factory, while older ones are in the hands of
the consumers.

Streaming programs can be represented graphically, as in Figure 1.4. This is a picture
of an FM stereo demodulation example,1 which is based on GNU radio [GNU]. Each box
represents a kernel, and each edge is a stream that carries data from its producer to its
consumer. The seven kernels interact in no other way, so they could be working at the same
time, on seven different processors.

Digital-signal processing and 3D graphics are examples of one-dimensional streaming,
meaning that the streams are inherently one-dimensional. The kernels are therefore either
stateless, in which case each stream element is processed independently from the others, or
stateful, in which case dependencies between elements mean that the kernel must be done
sequentially. Video encode and decode are examples of multi-dimensional stream program-
ming. Some of the kernels iterate over a two- or three-dimensional space, and contain data
parallelism that can only be exploited using wavefronts.

The reason to write an application as a stream program is that a machine can do a good
job of mapping a stream program to the hardware. First, it often happens that some kernels
involve much less work than others, and it makes sense to combine several small kernels into
one. The programmer can safely write many small kernels, knowing that when there are
few processors, small kernels will be merged, and the performance will be as good as if the
programmer had done it. Deciding which kernels to fuse together is known as partitioning ,
and is addressed in Section 3.2. Second, unlike task-level programming, there is no master
thread that can become the bottleneck. Third, the compiler can choose to batch work up into
larger chunks, benefiting from lower overheads, and economy of scale through data reuse and
vectorisation. This process is known as unrolling . Larger pieces of work have disadvantages
too: they require more working memory, so might not fit in cache, and they cause data to
take longer to go through the stream program, causing a longer latency.

Fourth, it often happens that some kernels themselves contain data parallelism, so can be
divided up to run on several processors in parallel. An example is a volume control, which
multiplies each audio sample by some slowly changing value that represents the volume.
Since each sample has no influence on any other, there is no state, and the work could be
shared among several processors. The FM demodulation example in Figure 1.4 contains
several Finite Impulse Response (FIR) filters, which are also stateless.

Streaming parallelism can be reduced to task-level parallelism, by breaking each kernel
up into a sequence of tasks. It is usually not possible, however, to go the other way: it is
hard for a compiler to deduce kernels and streams from the program source, and then use
the optimisation techniques mentioned above.

1.2 Compile-time vs run-time decisions

The programmer’s job is to write the source code, the human readable instructions to the
computer. The computer translates the source code to machine readable object code, a
process known as compilation, and will usually perform optimisations at the same time. Op-
timisations at compile time are effective because redundant or unnecessary work is removed

1This example is from the ACOTES project (Advanced Compiler Technologies for Embedded
Streaming)—see Section 1.3.

7

1. INTRODUCTION

for good, regular operations can be collected to run in parallel using SIMD instructions (vec-
torisation [LA00]), and program fragments can be customised for a particular context using
constant folding [Muc97], polyhedral optimisations [CGT04] and so on. Moreover, analysis
costs are paid just once. A second opportunity for optimisation is at install time, when the
executable can be tweaked for the specific machine it is going to run on. This thesis will not
distinguish between compile time and install time, and will assume that the compiler knows
precisely what the target machine will be. The machine is described to the compiler using
the ASM (Abstract Streaming Machine), defined in Chapter 2.

The final opportunity for optimisations is at run time, while the program is actually
running. This is when the most information is available, when the program’s behaviour can
be observed, and the environment is known: whether other programs need the CPUs, the
power source, battery level and CPU temperatures, and so on. Optimisation at run time is
effective because it can take account of this extra information, but CPU time is spent doing
run-time analysis rather than real work, and program fragments cannot be customised at
compile time.

In brief, predictable parts of the stream program will be statically partitioned and sched-
uled; i.e. the decisions will be made at compile-time. Chapter 3 addresses the compile-time
decisions. The poorly balanced and unpredictable parts of the stream program will be broken
up into tasks to be handled as task-level parallelism, and scheduled dynamically , at run time.
This is especially important for video applications, including H.264. Chapter 4 addresses
dynamic scheduling of stream programs.

1.3 The ACOTES stream compiler

This work was partly supported by the ACOTES project [ACO; M+11],1 which defined a
stream compiler framework, and developed a demonstration stream compiler. The ACOTES
compiler framework partitions a stream program to use task-level parallelism, batches up
communications through blocking, and statically allocates communications buffers. The
stream program is written using the Stream Programming Model (SPM) [CRM+07; ACO08;
M+11], an extension to the C programming language, developed for the ACOTES project
and described in Section 1.5.2.

Figure 1.5 shows the compilation flow. The source program is converted from SPM to
C, using the Mercurium [BDG+04] source-to-source converter. This step translates pragma
annotations into calls to the acolib (ACOTES library) run-time system, and inserts calls to
the trace collection functions. It fuses kernels that are mapped to the same processor, encap-
sulating them into routines, and inserts statically sized communication buffers, as required,
between kernels on different processors. The mapping is determined by the partitioning
algorithm described in Chapter 3. The resulting multi-threaded program is compiled us-
ing GCC, which was extended within the ACOTES project to perform blocking, polyhedral
transformations, and vectorisation. Additional mapping information is provided to GCC
using the Iterative Compilation Interface (ICI) [FC07]. The ACOTES compiler is iterative,
meaning that the program may be compiled several times, as the search algorithm adjusts
the mapping.

1Advanced Compiler Technologies for Embedded Streaming (contract no. IST-34869)

8

1.4 Task-level languages

source +
SPM pragmas

Task fusion
Allocation

Mercurium

source +
acolib

Blocking GCC ICI plugin

executable

Trace

Search
algorithm

ASM
simulator

ASM machine
description

Figure 1.5: The ACOTES iterative stream compiler

The ASM simulator executes a mapped stream program at a coarse granularity, and
generates statistics which are used to improve the mapping. The inputs to the simulator
are the ASM machine description, which describes the target, and the ASM program model,
which describes the program. The ASM simulator is driven by a trace, which allows it to
follow conditions and model varying computation times.

The ASM simulator is used inside the small feedback loop in the bottom right of Fig-
ure 1.5; for example in determining the size of the stream buffers, using the algorithm in
Section 3.3 [CRA10b]. The trace format has been designed to allow a single trace to be
reused for several different mappings. Section 2.6 describes in more detail the partitioning
algorithm and its interaction with the ASM.

The ASM simulator allowed work to start on the mapping heuristics before the compiler
transformation infrastructure was completed. Additionally, and experiments are repeatable
because there is no experimental error.

1.4 Task-level languages

1.4.1 StarSs and OmpSs

Task-level parallelism will be expressed, in this thesis, using Star Superscalar (StarSs), an
extension of the C programming language, developed at BSC–CNS.1 The extensions are
“pragmas” that tell the compiler about tasks, but they don’t change what the program does.
If a StarSs program is given to an ordinary compiler, that does not support StarSs, it will
ignore the pragmas, and the program will still work—just not in parallel.

1Barcelona Supercomputing Center–Centro Nacional de Supercomputación.

9

ASM/compilerflow.eps

1. INTRODUCTION

1 #pragma css task input(row, col) inout (inner)
2 void bmod(f loat row [3 2] [3 2] ,
3 f loat co l [3 2] [3 2] ,
4 f loat i nner [3 2] [3 2])
5 {
6 for (int i =0; i <32; i++)
7 for (int j =0; j <32; j++)
8 for (int k=0; k<32; k++)
9 i nner [i] [j] −= row [i] [k]* co l [k] [j] ;

10 }

Figure 1.6: Example StarSs code (bmod function from LU factorisation)

StarSs is an umbrella term for the common parts of GRID Superscalar [SP09], Cell Su-
perscalar (CellSs) [BPBL06], and SMP Superscalar (SMPSs) [PBL08], plus generalisations
for GPUs (Graphics Processing Units) and clusters. CellSs targets the Cell Broadband
Engine [CRDI05], which has distributed memories, and needs the run-time system to pro-
gram DMA transfers to get data from one processor to another. SMPSs targets Symmetric
Multiprocessors, which have a global shared address space, so DMA transfers are not re-
quired. For more information please refer to the conference publications cited above and the
CellSs [Bar09] and SMPSs [Bar08] manuals.

OmpSs is an implementation of StarSs, which also integrates the OpenMP standard. The
OmpSs compiler accepts both the StarSs syntax and the newer OmpSs syntax [DFA+09].

Figure 1.6 shows a short function, the bmod function from LU factorisation, annotated
with its StarSs pragma. This function works on subblocks of larger arrays: the subblocks
called row and col are inputs, and therefore not modified by the function, and the subblock
called inner is read and modified (inout). Pragmas contain some extra information, beyond
the direction of data transfer. First, a pragma says that the function should be a task in the
first place; i.e. that it is big enough, and worth offloading to another processor, given the
overheads of a software run-time.1 Second, when the formal parameter is a pointer rather
than an array, the pragma gives the array’s size (an example is given in Figure 5.12(b) on
page 111). This information is needed, but otherwise not given by the C source.

The program starts executing on one processor, in the master thread. When the master
thread calls a function like bmod marked as a task, the function does not execute right away.
Instead, a task, to do that function, is added to a run-time dependency graph, to be executed
some time in the future in a worker thread.

The dependency graph tracks dependencies between tasks, since some of the inputs to
bmod may not be ready yet. They may be outputs from tasks that haven’t yet been done.
Not all task-level languages allow tasks to depend on earlier tasks, instead needing the main
thread to wait for the predecessors to complete before it can fire off any task that needs
their outputs. Supporting dependencies is an important feature of StarSs, and it is easy to
imagine that it might improve performance.

Figure 1.7 shows the function prototypes and part of the compute function from the
Cholesky decomposition benchmark. Figure 1.8 shows dependency graphs for two different
problem sizes.2 The different colours correspond to the four functions, and the numbers
in subfigure (a) show the order in which the tasks were created. In practice, the whole

1Task Superscalar [ERB+10] and D2NOW [KET06] propose hardware support for fine-grained tasks.
2The problem size is given by the value of N in the source code.

10

1.4 Task-level languages

1 #pragma css task input(a , b) inout (c)
2 void sgemm t (f loat a [M] [M] , f loat b [M] [M] ,
3 f loat c [M] [M]) ;
4

5 #pragma css task inout (a)
6 void s p o t r f t (f loat a [M] [M]) ;
7

8 #pragma css task input(a) inout (b)
9 void s t r sm t (f loat a [M] [M] , f loat b [M] [M]) ;

10

11 #pragma css task input(a) inout (b)
12 void s s y r k t (f loat a [M] [M] , f loat b [M] [M]) ;
13

14 . . .
15

16 f loat A[N] [N] [M] [M] ; // NxN b locked matrix ,
17 // with MxM b loc k s
18

19 for (int j = 0 ; j<N; j++)
20 {
21 for (int k = 0 ; k<j ; k++)
22 for (int i = j +1; i<N; i++)
23 sgemm t (A[i] [k] , A[j] [k] , A[i] [j]) ;
24

25 for (int i = 0 ; i<j ; i++)
26 s s y r k t (A[j] [i] , A[j] [j]) ;
27

28 s p o t r f t (A[j] [j]) ;
29

30 for (int i = j +1; i<N; i++)
31 s t r sm t (A[j] [j] , A[i] [j]) ;
32 }

Figure 1.7: Extracts from StarSs code for Cholesky decomposition

1

2

34 5

67 8

9

14 15

18

23

26 311112 13

10

16 1719 2427 32

21 22

20

2528 33

30

29

34

35

(a) 5× 5 blocks (b) 12× 12 blocks

Figure 1.8: Dependency graphs for Cholesky decomposition

11

Introduction/cholesky-16-5.eps
Introduction/cholesky-16-12.eps

1. INTRODUCTION

dependency graph may never exist in this complete form, because tasks appear only after
they have been created, and are removed once they have been done.

Since several versions of one particular array may be in flight at once, the OmpSs run-
time renames arrays to break false dependencies, in a similar way to register renaming in a
superscalar processor.1 Even if task B modifies an array that is going to be needed by task
A, task B can be offloaded and even start executing before task A has finished. Task A will
always read the version it was supposed to, even if that version has since been superseded
by a new one. If the main thread needs the output of some task, it must request the data
using a pragma. The pragma waits for the task to complete and ensures that the live data
is copied back.

The compiler could potentially have looked through the function in Figure 1.6, and
written the pragma itself, without a person having to do it. This function is rather easy to
analyse statically, but other functions are harder.2 Alternatively, it could watch the function,
while the program is running, and see that it never seems to modify row, for example, guessing
that the annotation should be input(row). This approach needs a lot of test cases to ensure
that no special cases are overlooked. StarSs could therefore be used as a form of intermediate
language, to separate machine analysis from the run-time system.

In any case, we are interested here in using the OmpSs runtime to implement dynamic
scheduling for a streaming language, by splitting kernels into tasks. So the pragmas are
going to be generated by the machine anyway.

1.5 Streaming languages

1.5.1 StreamIt language

StreamIt [TKA02; CAG06] is a programming language for streaming applications, developed
at MIT. All computation is performed by filters, connected together by FIFOs, with decen-
tralised control rather than a master thread. Each FIFO carries data from a single producer
filter to a single consumer filter. Data arrives at the consumer in the order sent; that is
first-in first-out.

The stream graph is built hierarchically, using pipelines, splitjoins, and feedback loops.
These components3 are illustrated in Figure 1.9. All components, including filters, have a
single input FIFO and a single output FIFO.

A pipeline connects its children in sequence, so the output of each child component is
the input to the next—see Figure 1.9(a). A splitjoin connects its children in parallel, as
shown in Figure 1.9(b). The input FIFO is split among its children, either by duplication, or
by distributing its elements in a weighted round robin fashion. The output FIFOs are always
joined using weighted round robin. Splits and joins are the only vertices in the stream graph

1The current implementation of OmpSs does not support renaming.
2Deciding whether an argument is inout rather than input, for instance, is NP-hard, since a function

could modify an argument only after discovering that an NP-hard decision problem can be solved. A pointer
passed to sprintf is written through only in the uncommon case that the format directive is %n, something
that the compiler may not easily be able to rule out.

3The StreamIt term for a filter, pipeline, splitjoin, or feedback loop is a “stream”. Since in this thesis,
streams are the edges that carry data, this section uses the word component instead.

12

1.5 Streaming languages

child

child

child

split

child child child

join

join

body

loop

split

(a) Pipeline (b) Splitjoin (c) Feedback loop

Figure 1.9: StreamIt components: pipelines, splitjoins, and feedback loops

that can have more than one predecessor or successor; but they only distribute or gather
data, rather than being free to do arbitrary work.

A feedback loop introduces a feedback path from the output of its body child back to
its input, as shown in Figure 1.9(c). The feedback path optionally contains a component,
referred to as the loop. It may need one or more elements prequeued onto the output of the
loop component so that it does not deadlock.

Figure 1.10 shows an example StreamIt program, which is a bandpass filter, implemented
as the difference of two lowpass filters.1 The stream graph is deduced at compile time, and is
shown in Figure 1.11. The top level of the program is the pipeline defined in lines 54 to 65.
It contains four children, inserted using the add statements, which in turn read the input,
calculate the two lowpass filters, subtract elements in pairs to get the difference, and write
the output.

The two lowpass filters are contained in the splitjoin called BPFCore, defined in lines 40
to 45. The splitter duplicates each element on the input FIFO to go to both filters, the filters
happen on its two branches, and the joiner interleaves their outputs.

The lowpass filter is defined in lines 15 to 38. It is of type float�float, meaning that its
input FIFO holds elements of type float, and so does its output FIFO. Line 16 declares its
local data: a coefficient array whose number of elements is equal to taps. This array is built
by the initialisation function in lines 17 to 28.

Every filter has a work function that keeps getting called, until the program has finished.
In this case the work function is defined in lines 29 to 38. Each time this work function
is called; i.e. each time it fires, it pops a fixed number of elements from its input FIFO
and pushes a fixed number of elements into its output FIFO. The StreamIt 2.1 language
supports work functions that push or pop a variable number of elements; in which case, the
programmer may specify the minimum, maximum, and average number of elements. All
StreamIt benchmarks, however, currently have fixed rates.

Here, the number of elements popped is equal to 1 + decimation. The exact number
must be determinable at compile time. Since the filters are added in lines 42 and 43, both
times with decimation equalling zero, both filters pop one element each time they fire. This
is known in Figure 1.11, which was produced by the StreamIt compiler. Similarly, they both

1This is inefficient because the two filters could be merged into one, using linearity, but the example is
taken from the fm StreamIt benchmark, which works like this.

13

Introduction/streamit-pipeline.eps
Introduction/streamit-splitjoin.eps
Introduction/streamit-feedbackloop.eps

1. INTRODUCTION

1 /*
2 * Copy r i gh t 2001 Massachu se t t s I n s t i t u t e o f Techno logy
3 *
4 * Permiss ion to use , copy , modify , d i s t r i b u t e , and s e l l t h i s s o f tw a re and i t s
5 * documentat ion f o r any purpose i s he r eby g ran t ed w i t hou t fee , p rov ided t h a t
6 * t h e above c o p y r i g h t n o t i c e appear in a l l c o p i e s and t h a t bo t h t h a t
7 * c o p y r i g h t n o t i c e and t h i s pe rm is s ion no t i c e appear in s up po r t i n g
8 * documentation , and t h a t t he name o f M. I .T. not be used in a d v e r t i s i n g or
9 * p u b l i c i t y p e r t a i n i n g t o d i s t r i b u t i o n o f t he s o f tw a re w i t hou t s p e c i f i c ,

10 * wr i t t e n p r i o r pe rm is s ion . M. I .T. makes no r e p r e s e n t a t i o n s about t he
11 * s u i t a b i l i t y o f t h i s s o f t wa r e f o r any purpose . I t i s p rov ided ” as i s ”
12 * wi t h ou t e x p r e s s or imp l i e d warranty .
13 */
14
15 f loat−>f l oat f i l t e r LowPassFi l ter (f l oat rate , f l oat cu to f f , int taps , int decimat ion) {
16 f l oat [taps] c o e f f ;
17 i n i t {
18 int i ;
19 f l oat m = taps − 1 ;
20 f l oat w = 2 * pi * c u t o f f / rat e ;
21 for (i = 0 ; i < taps ; i++) {
22 i f (i − m/2 == 0)
23 c o e f f [i] = w/ pi ;
24 else

25 c o e f f [i] = s in (w*(i−m/2)) / p i / (i−m/2) *
26 (0 . 54 − 0.46 * cos (2* pi * i /m)) ;
27 }
28 }
29 work pop 1+decimat ion push 1 peek taps {
30 f l oat sum = 0;
31 for (int i = 0 ; i < taps ; i++)
32 sum += peek (i) * c o e f f [i] ;
33 push (sum) ;
34 for (int i =0; i<decimat ion ; i++)
35 pop () ;
36 pop () ;
37 }
38 }
39
40 f loat−>f l oat s p l i t j o i n BPFCore (f l oat rate , f l oat low , f l oat high , int taps) {
41 s p l i t dup l i c a t e ;
42 add LowPassFi l ter (rate , low , taps , 0) ;
43 add LowPassFi l ter (rate , high , taps , 0) ;
44 j o i n roundrobin ;
45 }
46
47 f loat−>f l oat f i l t e r Subt rac t e r {
48 work pop 2 push 1 {
49 push (peek (1) − peek (0)) ;
50 pop () ; pop () ;
51 }
52 }
53
54 void−>void p i p e l i n e Simpli f iedFMRadio5 {
55 f l oat samplingRate = 250000000; // 250 MHz
56 f l oat cutof fFrequency = 108000000; // 108 MHz
57 f l oat low = 55 . 0 ;
58 f l oat high = 97 . 998856 ;
59 int taps = 128;
60
61 add FileReader <f loat >(” input . in ”) ;
62 add BPFCore (samplingRate , low , high , taps) ;
63 add Subt rac t e r () ;
64 add Fi l eWri ter <f loat >(”output . out ”) ;
65 }

Figure 1.10: Example StreamIt 2.1 program, based on FMRadio5

14

1.5 Streaming languages

TopLevel0_FileReader__2_10_18

SplitJoin0_BPFCore_11_19

Pipeline1_BPFCore_11_20 Pipeline2_BPFCore_11_21

FileReader__2_10
push=1
pop=0

peek =0

DUPLICATE(1,1)

LowPassFilter__10_12
push=1
pop=1

peek =128

LowPassFilter__18_13
push=1
pop=1

peek =128

WEIGHTED_ROUND_ROBIN(1,1)

Subtracter__21_14
push=1
pop=2

peek =2

FileWriter__24_15
push=0
pop=1

peek =1

Figure 1.11: Stream graph for the example StreamIt 2.1 program

15

Introduction/SimplifiedFMRadio5-before-partition.eps

1. INTRODUCTION

1 int main ()
2 {
3 char c ;
4 #pragma acotes taskgroup
5 while (f r ead (&c , s izeof (c) , 1 , s td i n))
6 {
7 #pragma acotes task input(c) output(c)
8 i f (’A ’ <= c && c <= ’Z ’)
9 c = c − ’A ’ + ’ a ’ ;

10

11 #pragma acotes task input(c)
12 f w r i t e (&c , s izeof (c) , 1 , s tdout) ;
13 }
14 return 0 ;
15 }

taskgroup

if(’A’...

fwrite

c (line 7)

c (line 10)

(a) SPM source code for tolower
(b) Streaming graph

(flattened)

Figure 1.12: Example SPM program from [M+11]

push one output element each time they fire, and they look ahead, or peek 128 elements in
the stream, counting from the starting point. That is, they need 127 elements in addition
to the one they will pop.

Each filter is stateless, meaning that the calls to their work functions are independent,
so the filter contains data parallelism. A stateful filter has dependencies from one firing of
the work function to the next, because its work function writes to local data. For example,
it could be an adaptive filter that modifies its coefficient array, coeff. The compiler would
see that the work function modifies local data, and make sure that it is done sequentially.

This example illustrates the features of StreamIt that are important in this thesis. For
more information about StreamIt, refer to the language definition [CAG06], which is only
twenty pages in length. The example does not illustrate static blocks, which contain read-only
data visible to all filters. It also does not illustrate some of the more advanced features unused
by the StreamIt benchmarks, and not supported by our conversion tool: feedback loops,
described above, messaging, which is a mechanism for asynchronous messaging between
tasks, prework functions, which replace the work function the first time a kernel fires, or
support for variable push and pop rates.

This dissertation uses the StreamIt 2.1 language definition [CAG06], and the compiler
and benchmarks from the StreamIt 2.1.1 distribution, dated January 2007.

1.5.2 SPM (Stream Programming Model)

The SPM [CRM+07; ACO08; M+11] (Stream Programming Model) is an extension to the C
programming language to support stream programming, developed in the ACOTES project.
Whereas StreamIt is a new language that requires the program to be restructured to look like
a streaming program, SPM uses pragmas to annotate an ordinary C program. The pragmas
identify parts of the program to be made into kernels. Like StarSs, if an SPM program is
given to an ordinary C compiler, which doesn’t support SPM, it will ignore the pragmas,
and the program will still work. That is, SPM maintains the sequential semantics of C.

16

Introduction/example-spm.eps

1.6 Tool flow and support tools

StreamIt source
code

StreamIt compiler,
strc

StreamIt to
OmpSs, str2oss

Stream graph
Work

estimates
StarSs source

code

Cholesky
H.264 skeleton
· · ·

Partition

Queue sizes Nanos++
Adaptive
scheduler

ASM simulator

OmpSs compiler
(Mercurium) StarssCheck

trace

Paraver prvanim

Program desc.

Statistics

ASM machine

description

Compiler
decisions
Chapter 3

Run-time
decisions

Chapter 4

Figure 1.13: Tool flow used in this thesis. Items in bold are contributions of this thesis.

Figure 1.12 shows an example program using the SPM, and its stream graph. The
streaming part of a program is known as a taskgroup, and it comprises the loop following
the acotes taskgroup pragma, here on lines 5 to 13. This taskgroup has two tasks, each of
which contains the statement or block following an acotes task pragma. The task’s inputs
and outputs are identified using the input and output clauses.

The SPM program begins running in a single thread. When execution reaches the
taskgroup, all of its tasks are created, each becoming a kernel in the language of this thesis,
and the program starts processing data in streams, passing inputs and outputs through the
streams. More information can be found in the ACOTES documentation [CRM+07].

1.6 Tool flow and support tools

Figure 1.13 shows the tool flow used in this thesis, with the contributions of the thesis shown
in bold. The left-hand side of the diagram is for the compile-time decisions in Chapter 3,
and the right-hand side is for the run-time decisions in Chapter 4.

On the left, the StreamIt source code is compiled using the StreamIt compiler, which,
in addition to creating an executable, also creates a file representing the stream graph, in
dot format [GKN06], and a text file giving its estimate, for each filter, of the amount of
work per firing. These files are the input, together with the ASM machine description, to

17

Introduction/toolflow.eps

1. INTRODUCTION

the partitioning algorithm in Section 3.2. After partitioning, the buffer sizes are determined
using the buffer sizing algorithm in Section 3.3.

The right-hand side of the diagram is for the run-time decisions in Chapter 4. The
StreamIt source code is first translated to StarSs, using the tool described in Section 5.3.
The StarSs source code is built using the Mercurium OmpSs compiler.

The various dynamic scheduling techniques, including the two proposed adaptive tech-
niques, were compared using a set of OmpSs benchmarks built in this way.

1.6.1 Debugging using StarssCheck

When people start using a new programming language and compiler, they will soon discover
that some of their programs don’t work. They will need to find out why, before they can
fix them. A programming language without debug tools may be a fine research vehicle, but
it is unlikely to be widely adopted, as users become frustrated by bugs in their code, blame
the compiler, and think that the language is hard to use.

Section 5.1 describes a debugging tool, StarssCheck [CRA10a], that was developed as
part of this thesis. It finds bugs in StarSs programs, but similar ideas could be used in a tool
supporting SPM. StarssCheck was used, for example, to check the output of the StreamIt to
OmpSs converter described in Section 5.3. The reasons for targeting StarSs rather than the
SPM are that StarSs is more mature, and it already has real users.

1.6.2 Performance visualisation

In this thesis, the main reason to bother to write and compile an application to run in
parallel is to improve its performance. When the performance is disappointing, or in some
way surprising, it is important to understand why, and this requires some way to see how
the application progresses.

The main tools used for this purpose in this thesis were Paraver [CEP] and prvanim
(Paraver Animator). Paraver is a trace visualisation tool, developed at BSC–CNS. Paraver
reads a trace in a straightforward format [CEP01], which is a text file that can be easily
created either using custom code or the Mintaka library [Nanb].

Section 5.2 describes the prvanim tool, which was developed in the course of this thesis. It
takes a Paraver trace, and produces an animation that shows the progress of the application
through time. It is a simple tool, which has, nonetheless, proven quite useful.

1.6.3 StreamIt to OmpSs

In order to use the same StreamIt benchmarks throughout the thesis, these benchmarks had
to be translated to StarSs, so they could be compiled by the OmpSs compiler. For that
purpose, we developed str2oss, a source-to-source compiler that translates from StreamIt to
StarSs. This tool is described in Section 5.3. It does not support kernel fusion, but it does
support unrolling, using a control file given by the user.

Each filter is translated into a work function, and, if required, an initialisation function.
The work function does the work required by one firing of the filter, and is marked as a
StarSs task. The tool creates a main thread, which allocates memory for the streams, and
implements the steady state by calling the tasks in sequence.

18

1.7 Contributions and publications

1.7 Contributions and publications

The main contributions and publications of this thesis are:

The Abstract Streaming Machine (ASM), a machine model and coarse-grain sim-
ulator for a statically scheduled stream compiler.

[CRM+07] Paul Carpenter, David Rodenas, Xavier Martorell, Alejandro Ramirez, and Eduard Ayguadé. A

streaming machine description and programming model. Proc. of the International Symposium

on Systems, Architectures, Modeling and Simulation, Samos, Greece, July 16–19, 2007.

Early versions of the ASM and SPM, giving an example machine description and
program description in Python syntax. The sections related to the SPM do not
describe a contribution of this thesis.

[ACO08] ACOTES. IST ACOTES Project Deliverable D2.2 Report on Streaming Programming Model
and Abstract Streaming Machine Description Final Version. 2008.

The final version of the ASM from the ACOTES project. Chapter 2 is based on the
material in this report.

[CRA09b] Paul M. Carpenter, Alex Ramirez, and Eduard Ayguade. The Abstract Streaming Machine:
Compile-Time Performance Modelling of Stream Programs on Heterogeneous Multiprocessors.
In SAMOS Workshop 2009, pages 12–13. Best paper award.

A condensed version of the ACOTES Deliverable D2.2.

[CRA11] Paul M. Carpenter, Alex Ramirez, and Eduard Ayguade. The Abstract Streaming Machine:
Compile-Time Performance Modelling of Stream Programs on Heterogeneous Multiprocessors.
Transactions on HiPEAC, 5(3).

Extended version of the paper in the SAMOS Workshop 2009, similar to the
ACOTES Deliverable D2.2.

[M+11] Harm Munk et al. ACOTES Project: Advanced Compiler Technologies for Embedded Stream-
ing. International Journal of Parallel Programming, 39:397–450, 2011.

Paper presenting the outcomes of the whole ACOTES project. Only the parts relat-
ing to the ASM describe a contribution of this thesis.

A new partitioning heuristic for stream programs, which balances the load across the
target, including processors and communication links. It considers its effect on downstream
passes, and it models the compiler’s ability to fuse kernels.

[CRA09a] Paul M. Carpenter, Alex Ramirez, and Eduard Ayguade. Mapping Stream Programs onto
Heterogeneous Multiprocessor Systems. In CASES ’09: Proceedings of the 2009 International
Conference on Compilers, Architectures, and Synthesis for Embedded Systems, pages 57–66,
2009.

19

1. INTRODUCTION

Two static queue sizing algorithms for stream programs, which determine the sizes of
the buffers used to implement streams. The optimal buffer sizes are affected by latency and
variability in computation costs, and are constrained by the sizes of local memories, which
may be small.

[CRA10b] Paul M. Carpenter, Alex Ramirez, and Eduard Ayguade. Buffer Sizing for Self-timed Stream
Programs on Heterogeneous Distributed Memory Multiprocessors. In High Performance Em-
bedded Architectures and Compilers, 5th International Conference, HiPEAC 2010, pages 96–
110.

Two new low-complexity adaptive dynamic scheduling algorithms for stream-like
programs.

StarssCheck, a debugging tool for StarSs. This tool checks memory accesses per-
formed by tasks and the main thread, and warns if the StarSs pragmas are incorrect.

[CRA10a] Paul M. Carpenter, Alex Ramirez, and Eduard Ayguade. Starsscheck: A Tool to Find Errors
in Task-Based Parallel Programs. Euro-Par 2010–Parallel Processing, pages 2–13, 2010.

Figure 1.15 shows a timeline, which places the contributions of this thesis in context. It
also shows the two European projects that supported this work. The ACOTES project, which
ran from mid-2006 to mid-2009, partially supported the ASM and compile-time heuristics.
The ENCORE project, which started in March 2010, partially supported the run-time work,
which includes StarssCheck and str2oss. The timeline also shows some external milestones,
related to the Cell B.E., StarSs and StreamIt.

1.8 Thesis outline

Figure 1.14 shows the structure of the rest of this thesis. Chapter 2 describes the ASM, the
Abstract Streaming Machine, that characterises the machine on which the stream program
is going to run. The ASM tells the compiler how many processors there are, and how they
are connected. Chapter 3 concerns the decisions made at compile time: the partitioning
algorithm, and an algorithm that decides how big the communications buffers should be.
The output from the compiler is an executable using the Nanos++ library [Nana]. This
library includes an implementation of the OMP Superscalar runtime. Chapter 4 deals with
run-time scheduling of stream programs.

20

1.8 Thesis outline

Stream-like
applications

SPM, · · ·

§1 Introduction

Validation §5.1, StarssCheck

Stream graph annotations

Compile time
decisions

§3, Partitioning and
buffer sizing ASM

§2, Abstract
Streaming Machine

Executable
Nanos++ run-time library

Run time decisions
§4, Scheduler
in Nanos++

Feedback (Open research)
Queue occupancy, topology

graph, · · ·

Homogeneous target
Number of processors

Figure 1.14: Thesis structure

21

Introduction/thesis_structure.eps

1
.

IN
T

R
O

D
U

C
T

IO
N

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

SIFt compiler (MEng thesis
that led to StreamIt)

StreamIt 1.0 in ICCC2002

StreamIt 2.1 language specification

CellSs publication SMPSs publicationGridSs first publication

Cell B.E. in ISSCC 2005

Enrolled in UPC PhD program

ASM+SPM
deliverable (§2)

Partitioning (§3.1)

Buffer sizing
(§3.2)

StarssCheck
(§5.1)

ACOTES project
IST-34869

ENCORE project
ICT-FP7-248647

StreamIt

StarSs

Platforms

Projects

This thesisF
igu

re
1.15:

T
im

elin
e

22

Introduction/timeline.eps

Chapter 2

Abstract Streaming Machine

The first part of this thesis is concerned with the stream compiler. The stream compiler
builds an executable that runs efficiently on the target machine, applying, amongst others,
the transformations explained in Chapter 3. These transformations require the target to
be characterised using some kind of model. This chapter describes the Abstract Streaming
Machine (ASM), the machine description and performance model developed as part of the
ACOTES project [M+11]. The ACOTES project developed the framework for a stream
compiler illustrated in Figure 2.1, and discussed in Section 1.3.

There are two parts to the ASM. The ASM machine description describes the system
architecture of the target as a graph, and is sufficient for the partitioning algorithm, which
balances loads on the processors and interconnects. Other transformations, such as queue
sizing, need to see the system’s dynamic behaviour. When the program’s behaviour is simple
and regular, an analytical model of its progress may suffice. For example, the critical cycle
algorithm discussed in Section 3.14 assumes that the program repeats exactly the same
operations, with the same execution times and communication latencies over and over, and
represents the whole program’s execution using a cyclic directed graph. When the program’s
behaviour is irregular, there is no alternative to simulation or real execution.

The ASM simulator is a coarse-grain simulator, which models the execution of a mapped
stream program on the target, producing statistics and a Paraver trace. The simulator can
itself be driven by a trace, obtained from a real execution, which allows it to follow conditions
and model varying computation times. The ASM simulator needs an execution model for
the program, and this is given by the ASM program model. The trace format and program
model have been designed to allow a single trace to be reused for several different mappings.

2.1 Scope of the ASM

The ASM supports homogeneous and heterogeneous targets; that is, the processors’ instruc-
tion sets and microarchitectures may or may not be all the same. A homogeneous multipro-
cessor, comprised of identical cores, is easier to design, and easier to program. A heteroge-
neous target, in contrast, may have lower power consumption because different cores can be
tuned for different functions [CCG+00], and it mitigates Amdahl’s law [Amd67; KTJR05],
since work that cannot be done in parallel can be done by a more powerful, but less frugal,
processor.

23

2. ABSTRACT STREAMING MACHINE

source +
SPM pragmas

Task fusion
Allocation

Mercurium

source +
acolib

Blocking GCC ICI plugin

executable

Trace

Search
algorithm

ASM
simulator

ASM machine
description

Figure 2.1: The ACOTES iterative stream compiler, reproduced from Figure 1.5

The ASM also supports both shared and distributed memory. Shared memory is required
by many multithreaded C programs, so is common for machines with about 32 or fewer cores,
but it is expensive to scale cache-coherent shared memory to large numbers of processors.1

The cost to implement cache coherence is perhaps 5–10% of the total power consumption of
the data cache accesses [ESD02] in an eight-way SMP, and the cost grows with the number
of processors. Distributed memory is easier to implement in hardware, but it is harder
to program because data can only be sent between cores using explicit messages such as
send–receive (two-sided communication) or get–put (one-sided communication).

The ASM models shared or distributed memory only as required by the transformations
in a stream compiler. If memory is shared, it does not model sharing granularity, whether
the shared memory is coherent or not, and the intricacies of the consistency model [AG02].
All of the above differ significantly between implementations, but are needed only by the
run-time developer. Similarly, the ASM does not tell the run-time developer how to program
DMA transfers.

The ASM is also not needed for code generation, which produces object code for indi-
vidual functions, which run on a single core. This problem is addressed quite adequately
by existing compilers, and it would be both pointless and prohibitively expensive to try to
duplicate.2

The ASM is also the execution model for the ASM simulator. ACOTES supports static
scheduling, and has no support for dynamic scheduling. The ASM program model, therefore
is a model for statically scheduled stream programs, which is the focus of Chapter 3.

1Expensive, but not impossible. The Blacklight supercomputer contains two SGI Altix UV subsystems,
each cache-coherent shared memory with 2,048 processor cores.

2Regarding the latter point, GCC 4.5.2 has 300,000 lines of target-specific machine description (.md) files.

24

ASM/compilerflow.eps

2.1 Scope of the ASM

SPE1

LS1

LS0

SPE0

SPE3

LS3

LS2

SPE2

SPE5

LS5

LS4

SPE4

SPE7

LS7

LS6

SPE6Mem

PPE

EIB

P1

$1

P2

$2

P3

$3

Mem

Bus

(a) Single Cell B.E. (b) Shared-memory system

P1I1M1

P3I3M3

P2 I2 M2

P4 I4 M4

I5

I6 I7

I8

(c) 2× 2 mesh

Processor Memory Interconnect

Figure 2.2: Topology of three example targets

25

ASM/cellpic.eps
ASM/sharedmem.eps
ASM/mesh2x2.eps
ASM/topologykey.eps

2. ABSTRACT STREAMING MACHINE

2.2 ASM Machine Description

The target is represented as a undirected bipartite graph H = (V,E), where V is the set of
vertices, which represent resources, and E is the set of edges, which represent interconnects.
The resources are the processors and the memories. Figure 2.2 shows the topology of three
example targets. The machine description defines the machine visible to software, provided
by the OS and acolib, which may be different from the physical hardware. For example,
Playstation 3 has a Cell B.E. (processor) [CRDI05], which has one PPE and eight SPE
accelerators, but the Operating System makes just six of the SPEs available to software;
furthermore, the OS does not reveal the mapping from virtual to physical processor. We
also assume that the processors used by the stream program are not time-shared with other
applications while the program is running.

Figure 2.3 shows the parameters used to characterise each resource in the system, together
with their values for the Cell B.E. with the Cell implementation of acolib, and estimated
values for an SMP. Each processor core has a separate definition, allowing the ASM to
support both heterogeneous and homogeneous systems.

Each processor is defined using the parameters in Figure 2.3(a). As discussed above, the
details of the processor’s ISA and micro-architecture are already described in the compiler’s
back-end, so are not duplicated in the ASM. The ASM processor description lists the costs
of the acolib calls. The costs of ProducerSend and ConsumerAcquire are given by a staircase
function; i.e. a fixed cost, a block size, and an incremental cost for each complete or partial
block after the first. This variable cost is necessary both for FIFOs and for distributed
memory with DMA. For distributed memory, the size of a single DMA transfer is often limited
by hardware, so that larger transfers require additional processor time in ProducerSend to
program multiple DMA transfers. The discontinuity at 16KB in Figure 2.10, seen on the
Cell B.E., is due to this effect.

The addressSpace and hasIO parameters provide constraints on the compiler mapping,
but are not required to evaluate the performance of a valid mapping. The former defines the
local address space of the processor; i.e. which memories are directly accessible and where
they appear in local virtual memory, and is used to place stream buffers. The model assumes
that the dominant bus traffic is communication via streams, so either the listed memories
are private local stores, or they are shared memories accessed via a private L1 cache. In
the latter case, the cache should be sufficiently effective that the cache miss traffic on the
interconnect is insignificant. The hasIO parameter defines which processors can perform
system IO, and is a simple way to ensure that tasks that need system IO are mapped to a
capable processor.

Each interconnect is defined using the parameters shown in Figure 2.3(b). The system
topology is given by the elements parameter, which for a given interconnect lists the adjacent
processors and memories. Each interconnect is modelled as a bus with multiple channels,
which has been shown to be a good approximation to the performance observed in practice
when all processors and memories on a single link are equidistant [GLB00]. If there are more
messages than channels, then messages have to wait, and are arbitrated using a first-come-
first-served policy. There is a single unbounded queue per bus to hold the messages ready
to be transmitted. The compiler statically allocates streams onto buses, but the choice of
channel is made at runtime. The interfaceDuplex parameter defines for each resource; i.e.
processor or memory, whether it can simultaneously read and write on different channels.

26

2.2 ASM Machine Description

Parameter Description Cell SMP

name Unique name in platform namespace ‘SPEn’ ‘CPUn’

clockRate Clock rate, in GHz 3.2 2.4

hasIO True if the processor can perform IO False True

addressSpace List of the physical memories addressable by this pro-
cessor and their virtual address

[(LSn,0)] [(‘Mem’,0)]

pushAcqCost Cost, in cycles, to acquire a producer buffer (before
waiting)

448 20

pushSendFixedCost Fixed cost, in cycles, to push a block (before waiting) 1104 50

pushSendUnit Number of bytes per push transfer unit 16384 0

pushSendUnitCost Incremental cost, in cycles, to push pushUnit bytes 352 0

popAcqFixedCost Fixed cost, in cycles, to pop a block (before waiting) 317 50

popAcqUnit Number of bytes per pop transfer unit 16384 0

popAcqUnitCost Incremental cost, in cycles, to pop popUnit bytes 0 0

popDiscCost Cost, in cycles, to discard a consumer buffer (before
waiting)

189 20

(a) Definition of a processor

Parameter Description Cell SMP

name Unique name in platform namespace ‘EIB’ ‘FSB’

clockRate Clock rate, in GHz 1.6 0.4

elements List of the names of the elements (processors and
memories) on the bus

[‘PPE’,

‘SPE0’,· · · ,

‘SPE7’]

[‘CPU0’,

· · · ,

‘CPU3’]

interfaceDuplex If the bus has more than one channel, then define for
each processor whether it can transmit and receive
simultaneously on different channels

[True, · · · ,

True]

[False, · · · ,

False]

interfaceRouting Define for each processor the type of routing from
this bus: storeAndForward, cutThrough, or None

[None,· · · ,

None]

[None,· · · ,

None]

startLatency Start latency, L, in cycles 80 0

startCost Start cost on the channel, S, in cycles 0 0

bandwidthPerCh Bandwidth per channel, B in bytes per cycle 16 16

finishCost Finish cost, F , in cycles 0 0

numChannels Number of channels on the bus 3 1

multiplexable False for a hardware FIFO that can only support one
stream

True True

(b) Definition of an interconnect

Figure 2.3: Processor and interconnect parameters of the ASM and values for two example
targets (measured on Cell and estimated for a four-core SMP)

27

2. ABSTRACT STREAMING MACHINE

Parameter Description Cell SMP

name Unique name in platform namespace ‘LSn’ ‘Mem’

size Size, in bytes 262144 2147483648

clockRate Clock rate, in GHz 3.2 0.4

latency Access latency, in cycles 6 4

bandwidth Bandwidth, in bytes per cycle 16 8

Figure 2.4: Memory parameters of the ASM and values for two example targets

The bandwidth and latency of each channel is controlled using four parameters: the start
latency (L), start cost (S), bandwidth (B), and finish cost (F). In transferring a message
of size n bytes, the latency of the link is given by L + S + ⌊ n

B ⌋ and the cost incurred on the
link by S + ⌊ n

B ⌋+ F . This model is natural for distributed memory machines, and amounts
to the assumption of cache-to-cache transfers on shared memory machines. Figure 2.5 shows
the temporal behaviour of a single message transfer on a bus.

Hardware routing is controlled using the interfaceRouting parameter, which defines for
each processor whether it can route messages from this interconnect: each entry can take the
value storeAndForward, cutThrough or None. Memory controllers and routers are modelled
as a degenerate type of processor.

Each memory is defined using the parameters shown in Figure 2.4. The latency and
bandwidth figures are currently unused in the model, but may be used by the compiler to
refine the estimate of the run time of each task. The memory definitions are used to determine
where to place communications buffers, and provide constraints on blocking factors.

2.3 ASM Program Description

The ASM program model is the execution model of the compiled program running under
the ASM simulator. The compiled stream program is a connected directed graph of tasks
and point-to-point streams, as described later in Section 3.2.1. Kernels are present in the
source program, whereas tasks, each of which implements one or more kernels, are present
in the executable.

Tasks communicate using four acolib communications primitives, which use a push model
similar to the DBI (Direct Blocking In-order) variant of TTL [vdWdKH+04]. These primi-
tives push or pop buffers, which contain a fixed number of elements chosen by the compiler.
The buffer sizes can be different at the producer and consumer ends, but the following de-
scription assumes they are the same, to avoid extraneous detail. A block is the contents of
one buffer, and i and j count blocks, starting at zero. The first argument, s, is the stream.
Each end of the stream has a fixed number of buffers, chosen by the compiler using the
algorithm in Section 3.3, and denoted np(s) and nc(s).

ProducerAcquire(s, k) Wait for the producer buffer for block i+k to be available, meaning
that the DMA transfer of block i + k − np(s) has completed

28

2.3 ASM Program Description

Time

Push send

Ps

Start cost

S

Message transfer

sizeof(msg)
B

Finish cost

F

Pop acquire

Ca

Pop wait

Start latency, L

Consumer processing Pop discard

Producer

Interconnect

Consumer

Free producer
buffer

Free consumer
buffer

Figure 2.5: Cost and latency of communication between tasks

ProducerSend(s) Wait for the consumer buffer for block i to be available, meaning that the
producer has received acknowledgement that block i−nc(s) has been discarded. Then
send the block and increment i

ConsumerAcquire(s, k) Wait for block j + k to arrive in the consumer buffer

ConsumerDiscard(s) Discard block j, send acknowledgement, and increment j

The program model uses a trace, and the same trace can be reused for several different
mappings of the program onto the target—as illustrated by the small feedback loop in the
bottom right of Figure 1.5. This reuse avoids recompiling the whole program via Mercurium
and GCC, just to obtain a new trace. Because tasks may have complex irregular behaviour,
the trace contains control flow information inside the tasks.

The basic unit of sequencing inside a task is the subtask, which pops a fixed number
of elements from each input stream and pushes a fixed number of elements on each output
stream. In detail, the work function for a subtask is divided into three consecutive phases.
First, the acquire phase obtains the next set of full input buffers and empty output buffers,
using ProducerAcquire and ConsumerAcquire. Second, the processing phase works locally on
these buffers, and is modelled using a fixed processing time, determined from a Paraver [CEP]
trace. Finally, the release phase discards the input buffers using ConsumerDiscard, and sends
the output buffers using ProducerSend, releasing the buffers in the same order they were
acquired. This three-stage model is not a deep requirement of the ASM, and was introduced
as a convenience in the implementation of the simulator, since our compiler will naturally
generate subtasks of this form.

A task is the concatenation of one or more subtasks. Figure 2.6(a), (b) and (c) show
how to represent some tasks that perform an arbitrary fixed sequence of communication
and computation. The superscript is the iteration number of the task. Although a stream
has exactly one producer and one consumer task, it may be accessed from more than one
subtask. For example, Figure 2.6(b) has two subtasks, b0 and b1, and they both push
elements on stream s. In order to support control flow, all subtasks of all tasks are placed
into a common control-flow hierarchy. Subtasks are executed conditionally or repeatedly

29

ASM/commtimeline.eps

2. ABSTRACT STREAMING MACHINE

p0

q0

p1

q1

p2

q2

a
(1)
0 a

(2)
0

· · ·a
(0)
0

p

q

(a) Task containing a single subtask a0; the superscript is the iteration number

r0

s0 s1

r1

s2 s3

b
(1)
0 b

(1)
1

· · ·b
(0)
0 b

(0)
1

1

r

2

s

(b) Interpolation task containing subtasks b0 and b1

c
(1)
0 c

(1)
1 c

(1)
3 c

(1)
4

· · ·c
(0)
0 c

(0)
1 c

(0)
3 c

(0)
4

v0 w0

t0 u0

v1 w1

t1 u1t u

v w

(c) Irregular task containing subtasks c0, c1, c2, c3 and c4

a(0), b(0) a(1), b(1)

d
(0)
0 d

(0)
2 d

(1)
0 d

(1)
1 d

(1)
2

· · ·

e
(0)
0 e

(0)
1 e

(0)
2 e

(1)
0 e

(1)
2

· · ·

a b

(d) Execution and communication of the program of Figure 2.7 and Figure 2.8

Figure 2.6: Building tasks from subtasks

30

ASM/paperpic.14
ASM/paperpic.10
ASM/paperpic.13
ASM/paperpic.15

2.3 ASM Program Description

1 #pragma acotes taskgroup
2 while (1)
3 {
4 #pragma acotes task output(a , t)
5 f 1 (&a , &t) ;
6 #pragma acotes task input(t) output(b)
7 b = f2 (t) ;
8

9 i f (cond)
10 {
11 #pragma acotes task input(a) \
12 output(a)
13 a = g1 (a) ;
14 }
15 else
16 {
17 #pragma acotes task input(b) \
18 output(a ,b)
19 h1(&a , &b) ;
20 }
21

22 #pragma acotes task input(a) output(u)
23 u = k1 (a) ;
24 #pragma acotes task input(b,u)
25 k2 (b , u) ;
26 }

R0

R1 R2

t

u

f1
f2

g1 h1

k1
k2

(a) SPM source program
(b) The three connectivity sets:

R0, R1, and R2

Figure 2.7: Example stream program with data-dependent flow

based on a Paraver trace attached to this control-flow hierarchy, with this common trace
ensuring that communicating tasks behave consistently.

Each if or while statement has an associated control variable, which gives its sequence
of arguments. As part of the conversion from SPM to C, the Mercurium tool inserts calls to
the trace collection functions, which record the control variables in the Paraver trace. The
control variables are represented using event records in the trace; the event type identifies
the control variable, and the event value gives its value.

Figure 2.7(a) is the source code for an example stream program containing six kernels
and an if statement. Figure 2.7(b) is the stream graph. Because the program contains an if
statement, the multiplicities of the kernels depend on the data. However, within each shaded
region, R0, R1, and R2, the program is homogeneous Synchronous Dataflow (SDF).

The ASM sees the program after it has been partitioned. Imagine that the partition
is as given in Figure 2.8(a), so that task D contains kernels f1, f2, and g1, and task E
contains kernels h1, k1, and k2. The tasks execute at the same frequency, but they both
contain kernels from inside and outside the if statement. Conditional execution of g1 and
h1, including modelling of computation times and their pushes and pops, is driven using a
control variable in the trace.

Figure 2.8(c) is one way for the compiler to implement the given partition. The tasks are
decomposed into subtasks, d0, d1, and d2, and e0, e1, and e2. Figure 2.8(b) shows the control
flow hierarchy that controls the execution. The subtasks at the root are always executed,
d1 is executed if the control variable is True, and e1 is executed if it is False. Figure 2.6(d)
shows an execution trace where the decision values for this node are False, True, · · · . The

31

ASM/paperpic.18
ASM/paperpic.12

2. ABSTRACT STREAMING MACHINE

Task Kernels
D f1, f2, g1
E h1, k1, k2

(a) Partition

{d0, d2, e0, e2}

if

{d1}

True

{e1}

False

1 void D(void)
2 {
3 while (1)
4 {
5 f 1 (&a , &t) ; // d0
6 b = f2 (t) ; // d0
7 i f (cond) // d1
8 a = g1 (a) ; // d1
9 push (s , a) ; // d2

10 push (t , b) ; // d2
11 }
12 }
13

14 void E(void)
15 {
16 while (1)
17 {
18 a = pop (s) ; // e0
19 b = pop (t) ; // e0
20 i f (! cond) // e1
21 h1(&a , &b) ; // e1
22 u = k1 (a) ; // e2
23 k2 (b , u) ; // e2
24 }
25 }

(b) Control flow hierarchy (c) Extended C for partition

Figure 2.8: Representation of data-dependent flow between tasks and subtasks

control variable attached to a while node is similar, but it counts the number of iterations
of the loop.

There are no explicit streams carrying the control variables of if or while statements
between tasks. The compiler ensures that such tasks are consistent with each other, and
may in the general case have to add such streams to do so. There are, however, examples
where it would be unnecessary. It is assumed that the compiler produces correct code, and
the ASM uses the control-flow hierarchy to ensure that its own model is consistent.

A stream is defined by the size of each element, and the location and length of either the
separate producer and consumer buffers (distributed memory) or the single shared buffer
(shared memory). These buffers do not have to be of the same length. If the producer or
consumer task uses the peek primitive, then the buffer length should be reduced to model the
effective size of the buffer, excluding the elements of history. The Finite Impulse Response
(FIR) filters in the GNU radio benchmark of Section 2.5 are described in this way. It
is possible to specify a number of elements to prequeue on the stream before execution
begins.

2.4 Platform characterisation

The platform is characterised using the small suite of synthetic benchmarks illustrated in
Figure 2.9. All benchmarks have variable number of bytes transferred per iteration, denoted
b. The producer-consumer benchmark is used to determine basic parameters, and has two
actors: a producer, and consumer, with two buffers at each end. The chain benchmark, is a
linear pipeline of n tasks, and is used to characterise bus contention. The chain2 benchmark

32

ASM/paperpic.19

2.4 Platform characterisation

1 22 2

(a) Producer-consumer

1 2 n· · ·2 2

(b) Chain

1 2 n· · ·2 2

2 c

(c) Chain2

Figure 2.9: Synthetic stream benchmarks

+++++++++++++++
++++++++++++++++

+

++++++++
+++

++
+
+
++

++
++

+
++

++
+
++

+
+

5 10 15 20 25 30

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

Kilobytes transferred per firing

us
ec

s
pe

r
fir

in
g

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

+

*
Measured
Simulated

++
++

++
++

++
++

++
++

++
++

++
++

++
++

++
++

++
++

++
++

++++
+++++++++++

++++++++

5 10 15 20 25 30

0
5

10
15

20
25

Kilobytes transferred per firing

G
ig

ab
yt

es
 p

er
 s

ec
on

d

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

+

*
Measured
Simulated

(a) Time per iteration (b) Throughput

Figure 2.10: Results for producer-consumer benchmark on Cell B.E.

33

ASM/prodcons.eps
ASM/chain.eps
ASM/chain2.eps
ASM/val-prodcons.eps
ASM/val-prodcons-throughput.eps

2. ABSTRACT STREAMING MACHINE

0 5 10 15 20 25 30

0.
7

0.
9

1.
1

1.
3

Kilobytes transferred per firing

us
ec

s
pe

r
fir

in
g

n=2

n=3
n=4n=56

7
n=8

0 5 10 15 20 25 30

0.
7

0.
9

1.
1

1.
3

Kilobytes transferred per firing

us
ec

s
pe

r
fir

in
g

n=2

n=4n=5

6
7n=8

(a) Chain: real results (b) Chain: averaged real results

0 5 10 15 20 25 30

0.
7

0.
9

1.
1

1.
3

Kilobytes transferred per firing

us
ec

s
pe

r
fir

in
g

n=2

3

n=4

n=5n=67

n=8

+
+

+

+

+

+

+

2 4 6 8

0
1

2
3

4
5

Number of tasks

us
ec

s
pe

r
fir

in
g

c=1

+ +
+

+
+

+
+ c=2

+ + + + +
+

+ c=3

+ + + + + + + c=6*
*

*

*

*

*

*

* *
*

*
*

*
*

* * * *
*

*
*

* * * * *
*

*

* * * * * * *
* * * * * * *

+

*
Measured
Simulated

(c) Chain: simulated results (d) Chain2: time per iteration

Figure 2.11: Time per iteration for the chain and chain2 benchmarks on Cell B.E.

34

ASM/val-chain-blocksize.eps
ASM/val-chain-blocksize-avg.eps
ASM/val-chain-blocksize-sim.eps
ASM/val-chainmem.eps

2.5 Validation of the ASM

is used to model latency and queue contention, and is a linear pipeline, similar to chain,
but with an extra cut stream between the first and last tasks. The number of blocks in the
consumer-side buffer on the cut stream is a parameter, c.

This section characterises the IBM QS20 blade, which was two Cell B.E.s (processors).
Figure 2.10 shows the time per iteration for producer-consumer, as a function of b. The
discontinuity at b = 16KB is due to the overhead of programming two DMA transfers.
For b < 20.5KB, the bottleneck is the computation time of the producer task, as can be
seen in Figure 2.12(a) and (b), which compares real and simulated traces for b = 8K. For
b > 20.5K, the bottleneck is the interconnect, and the slope of the line is the reciprocal of
the bandwidth: 25.6GB/s. Figure 2.12(c) and (d) compares real and simulated traces for
b = 24K. The maximum relative error for 0 < b < 32KB is 3.1%.

Figure 2.11 shows the time per iteration for chain, as a function of n, the number of tasks,
and b, the block size. Figure 2.11(a) shows the measured performance on the IBM QS20
blade, when tasks are allocated to SPEs in increasing numerical order. The EIB (Element
Interconnect Bus) on the Cell processor consists of two clockwise and two anticlockwise rings,
each supporting up to three simultaneous transfers provided that they do not overlap. The
drop in real, measured, performance from n = 4 to n = 5 and from n = 7 to n = 8 is
due to contention on certain hops of the EIB, which the ASM does not attempt to model.
As described in Section 2.2, the ASM models an interconnect as a set of parallel buses.
Figure 2.11(b) shows the average of the measured performance of three random permutations
of the SPEs. The simulated results in Figure 2.11(c) are hence close to the expected results,
in a probabilistic sense, when the physical ordering of the SPEs is not known.

Figure 2.11(d) shows the time per iteration for chain2, as a function of the number of
tasks, n, and the size of the consumer-side buffer of the shortcut stream between the first
and last tasks, denoted c. The bottleneck is either the computation time of the first task
(1.27us per iteration) or is due to the latency of the chain being exposed due to the finite
length of the queue on the shortcut stream. Figure 2.12(e) and (f) shows real and simulated
traces for the latter case, with n = 7 and c = 2.

2.5 Validation of the ASM

This section describes the validation work using the ACOTES GNU radio benchmark, which
is based on the FM stereo demodulator in GNU Radio [GNU]. Table 2.1(a) shows the
computation time and multiplicity per kernel, the latter being the number of times it is
executed per pair of l and r output elements. Four of the kernels, being FIR filters, peek
backwards in the input stream, requiring history as indicated in the table. Other than this,
all kernels are stateless.

Table 2.1 shows two mappings of the GNU radio benchmark onto the Cell B.E. The first
allocates one task per kernel, using seven of the eight SPEs. Based on the resource utili-
sation, the Carrier kernel was split into two worker tasks and the remaining kernels were
partitioned onto two other SPEs. This gives 79% utilisation of four processors, and approx-
imately twice the throughput of the unoptimised mapping, at 7.71ms per iteration, rather
than 14.73ms per iteration. The throughput and latency from the simulator are within 0.5%
and 2% respectively.

35

2. ABSTRACT STREAMING MACHINE

Real Simulated

1

2

1.0ms 1.002ms 1.004ms 1.006ms 1.008ms

1

2

1.0ms 1.002ms 1.004ms 1.006ms 1.008ms

(a) Compute bound (real) (b) Compute bound (simulated)

1

2

1.0ms 1.002ms 1.004ms 1.006ms 1.008ms

1

2

1.0ms 1.002ms 1.004ms 1.006ms 1.008ms

(c) Comm. bound (real) (d) Comm. bound (simulated)

1

2

3

4

5

6

7

1.5ms 1.507ms 1.514ms 1.521ms 1.528ms 1.535ms

1

2

3

4

5

6

7

0.74ms 0.747ms 0.754ms 0.761ms 0.768ms 0.775ms

(e) Queueing bound (real) (f) Queueing bound (simulated)

Demod.

Lowpass (m)

Bandpass

Carrier

Freq. shift

Lowpass (s)

Sum

1.05s 1.06s 1.07s 1.08s 1.09s

Demod.

Lowpass (m)

Bandpass

Carrier

Freq. shift

Lowpass (s)

Sum

1.057s 1.067s 1.077s 1.087s 1.097s

(g) GNU radio naive mapping (real) (h) GNU radio naive mapping (simulated)

Demod.

Bandpass

Carrier 1

Carrier 2

Freq. shift

Lowpass

Sum

0.75s 0.755s 0.76s 0.765s 0.77s

Demod.

Bandpass

Carrier 1

Carrier 2

Freq. shift

Lowpass

Sum

0.759s 0.764s 0.769s 0.774s 0.779s

(i) GNU radio optimised (real) (j) GNU radio optimised (simulated)

Processing

Pop work

Pop wait

Push local wait

Push remote wait

Push work

Figure 2.12: Comparison of real and simulated traces

36

ASM/val-prodcons-2048-50-0.eps
ASM/val-prodcons-compute-sim.eps
ASM/val-prodcons-6144-50-0.eps
ASM/val-prodcons-comms-sim.eps
ASM/val-chainmem-queue.eps
ASM/val-chainmem-queue-sim.eps
ASM/val-gnuradio-orig.eps
ASM/val-gnuradio-orig-sim.eps
ASM/val-gnuradio2.eps
ASM/val-gnuradio2-sim.eps
ASM/paraver-legend.eps

2.5 Validation of the ASM

Kernel Multiplicity History
buffer

Time per
firing (us)

% of
total load

Demodulation 8 n/a 398 1.7%

Lowpass (middle) 1 1.6K 7, 220 3.8%

Bandpass 8 1.6K 7, 246 30.4%

Carrier 8 3.2K 14, 351 60.2%

Frequency shift 8 n/a 12 0.1%

Lowpass (side) 1 1.6K 7, 361 3.9%

Sum 1 n/a 13 0.0%

(a) Kernels

Task Kernel Blocking
factor

1 Demodulation 512

2 Lowpass (middle) 128

3 Bandpass 1024

4 Carrier 1024

5 Frequency shift 1024

6 Lowpass (side) 128

7 Sum 128

Task Kernel Blocking
factor

1
Demodulation 1024

Bandpass 1024

2 Carrier (even) 1024

3 Carrier (odd) 1024

4

Lowpass (middle) 128

Frequency shift 1024

Lowpass (side) 128

Sum 128

(b) Naive mapping (c) Optimised mapping

Table 2.1: Kernels and mappings of the GNU radio benchmark

37

2. ABSTRACT STREAMING MACHINE

Initial partition

Merge tasks

Move bottlenecks

Create tasks

Reallocate tasks

Partition

Buffer size
update

Allocation

ASM
simulator

Metrics

Cycle
detection

Bottleneck

E
valu

ation

Final
allocation

Fail

(a) Partitioning Queue length assignment

Figure 2.13: Detail on the main phases in the search algorithm

2.6 Using the ASM

This section explains how the ACOTES stream compiler uses the ASM machine description
and simulator.

2.6.1 Static partitioning

The partitioning phase in Section 3.2 decides how to fuse kernels into tasks, and allocates
these tasks to processors [CRA09a]. It represents the target as an undirected bipartite
graph, H = (VH , EH), taken directly from the ASM. The weight of processor p, denoted wp

is its clock rate in GHz, and the weight of interconnect u, denoted wu is its bandwidth in
GB/s. The static routing table is determined using minimum distance routing, respecting the
interfaceRouting parameters. We didn’t find it necessary to store the routing table explicitly
in the ASM.

Figure 2.13(a) shows the main stages in the partitioning phase. An initial partition
is constructed by recursively subdividing the target and program. The partition is then
improved using several optimisation passes.

The partitioning phase uses connectivity sets [CRA09a] to constrain the mapping to make
sure the compiler can support it. In particular, the ACOTES compiler can only fuse kernels
that are lexicographically adjacent in the same basic block. Each connectivity set is therefore
a pair of adjacent kernels in the same basic block. In a more advanced compiler, we would
expect the connectivity sets to be as illustrated in Figure 2.7(b).

38

ASM/partition-stages.eps
ASM/queue-stages.eps

2.7 Related work

SPE1 SPE2 SPE8

LS1 LS2 LS8

Processors, P :

Memories, M :

Figure 2.14: Memory constraint graph for the Cell Broadband Engine

2.6.2 Static buffer sizing

The queue length assignment phase in Section 3.3 allocates memory for stream buffers,
subject to memory constraints, and taking account of variable computation times and task
multiplicities [CRA10b]. The objectives are to maximise throughput and minimise latency.

This phase is an iterative algorithm, which uses the ASM simulator to find the through-
put, utilisation, and latency, given the candidate buffer sizes. As mentioned in Section 1.3,
simulation is used because a mathematical model is unlikely to capture the real behaviour.

Figure 2.13(b) shows the main stages in the queue length assignment phase. A cycle
detection algorithm uses statistics from the ASM simulator to find the bottleneck. There are
two cycle detection algorithms: the baseline algorithm uses only the total wait time on each
primitive on each stream, and the token algorithm tracks dependencies through tasks. The
buffer size update algorithm chooses the initial buffer sizes, and adjusts them to resolve the
bottleneck. The evaluation algorithm monitors progress and decides when to stop, choosing
the buffer sizes that achieved the best performance-latency tradeoff.

The inputs to the queue length assignment phase are the stream program, minimum
buffer sizes, and the memory constraint graph. The minimum buffer sizes can be one block,
because an SPM stream program is acyclic. The memory constraint graph is a bipartite
graph, H = (RH, EH), where the vertices are the processors and memories, and the edges
connect processors to their local memories. Figure 2.14 shows a memory constraint graph
for the Cell B.E.

The memory constraint graph is generated from the addressSpace parameter for each
processor. The remaining capacities are taken from the size parameters of the memories,
minus the sizes of any code and data already in them.

2.7 Related work

Recent work on stream programming languages, most notably StreamIt [TKA02] and Syn-
chronous Data Flow (SDF) [LM87], has demonstrated how a compiler may potentially match
the performance of hand-tuned sequential or multi-threaded code [GR05].

Most work on machine description languages for retargetable compilers has focused on
describing the ISA and micro-architecture of a single processor. Among others, the lan-
guages ISP, LISA, and ADL may be used for simulation, and CODEGEN, BEG, BURG,
nML [FVPF95], EXPRESSION [HGG+99], Maril and GCC’s .md machine description are
intended for code generation (see; e.g. [RDF98]). The ASM describes the behaviour of the
system in terms of that of its parts, and is designed to co-exist with these lower-level models.

The Stream Virtual Machine (SVM) is an intermediate representation of a stream pro-
gram, which forms a common language between a high-level and low-level compiler [LMT+04;

39

ASM/cell-mem.eps

2. ABSTRACT STREAMING MACHINE

MTHV04]. Each kernel is given a linear computation cost function, comprised of a fixed over-
head and a cost per stream element consumed. There is no model of irregular dataflow. The
SVM architecture model is specific to graphics processors (GPUs), and characterises the
platform using a few parameters such as the bandwidth between local and global memory.
The PCA Machine Model [Mat04], by the Morphware Forum, is an XML definition of a
reconfigurable computing device, in terms of resources, which may be processors, DMA en-
gines, memories and network links. The reconfigurable behaviour of a target is described
using ingredients and morphs. Unlike the ASM, the PCA Machine Model describes the entire
target, including low-level information about each processor’s functional units and number
of registers.

ORAS is a retargetable simulator for design-space exploration of stream-based dataflow
architectures [Kie99]. The target is defined by the architecture instance, which defines the
hardware as a graph of architecture elements, similar to the resources of the ASM. The
purpose is performance analysis rather than compilation, and the system is specified to a
greater level of detail than the ASM.

Gordon et al. present a compiler for the StreamIt language targeting the Raw Architec-
ture Workstation, and applying similar transformations to those discussed in this chapter
and the next [GTA06]. As the target is Raw, there is no general machine model similar
to the ASM. The compiler uses simulated annealing to minimise the length, in cycles, of
the critical path. Our approach has higher computational complexity in the compiler’s cost
model, but provides retargetability and greater flexibility in the program model.

Gedae [LBS] is a proprietary stream-based graphical programming environment for signal
processing applications in the defence industry. A version of Gedae has been released for
the Cell processor. The developer specifies the mapping of the stream program onto the
target, and the compiler generates the executable implementation. There is no compiler
search algorithm or cost model.

40

Chapter 3

Compile-time Decisions

The stream compiler takes the human-readable source code, written in a stream programming
language, and generates an executable that runs efficiently on the target machine. The
compiler applies optimising transformations, including those described in this chapter.

The first high-level transformation enabled by stream programming is unrolling. Un-
rolling batches up work to amortise overheads in computation and communication. It also
enables vectorisation [LA00] and data reuse. Automatically determining the unroll factors
was not considered part of this thesis. MacroSS [HCW+10] is one technique that unrolls
kernels to enable SIMD vectorisation. The unroll factors for the benchmarks in this chapter
and Chapter 4 were set manually.

The next transformation is static partitioning, which decides which kernels should be
fused together, and on which processors they should be executed. Clearly a good parti-
tioning algorithm is crucial to high performance. A bad partition may be poorly balanced,
loading most of the work onto one processor; or it may be well balanced but imply an ex-
cessive amount of communication back and forth between the processors. In which case, the
communication links could become the bottleneck.

The final step is to statically allocate the buffers. This is an important problem, because
it affects performance, as explained in Section 3.1, especially when computation times and
communication rates are variable. Some platforms with distributed memory provide each
core with very little addressable memory. For example, the Cell B.E. has just 256KB of local
store per SPE, which must contain all code and data. On such platforms, it is important to
allocate memory carefully.

3.1 Motivation

The stream program is built from kernels, which communicate through one-way channels
known as streams. The programmer should be encouraged to write many small kernels,
knowing that kernels on the same processor will be fused together, and that performance
would be as good as if the programmer had done it.

The job of the partitioning algorithm is to decide which kernels should be fused together,
and on which processors they should be executed. The goal is performance, taking account of
constraints from the compiler. The partitioning algorithm optimises performance by trying
to balance the load equally among the processors.

41

3. COMPILE-TIME DECISIONS

8

8 8 8 8 8 8 8 8

64

8

8

1

1

8

8 8

1 6

8 8

8

8

8

1

1

8

8 8

1 6

8 8

8

8

8

1

1

8

8 8

1 6

8 8

8

8

8

1

1

8

8 8

1 6

8 8

8

8

8

1

1

8

8 8

1 6

8 8

8

8

8

1

1

8

8 8

1 6

8 8

8

8

8

1

1

8

8 8

1 6

8 8

8

8

8

1

1

8

8 8

1 6

8 8

8

8

8

8 8 8 8 8 8 8 8

64

8

8

1

1

8

8 8

1 6

8 8

8

8

8

1

1

8

8 8

1 6

8 8

8

8

8

1

1

8

8 8

1 6

8 8

8

8

8

1

1

8

8 8

1 6

8 8

8

8

8

1

1

8

8 8

1 6

8 8

8

8

8

1

1

8

8 8

1 6

8 8

8

8

8

1

1

8

8 8

1 6

8 8

8

8

8

1

1

8

8 8

1 6

8 8

8

8

8

8 8 8 8 8 8 8 8

64

8

8

1

1

8

8 8

1 6

8 8

8

8

8

1

1

8

8 8

1 6

8 8

8

8

8

1

1

8

8 8

1 6

8 8

8

8

8

1

1

8

8 8

1 6

8 8

8

8

8

1

1

8

8 8

1 6

8 8

8

8

8

1

1

8

8 8

1 6

8 8

8

8

8

1

1

8

8 8

1 6

8 8

8

8

8

1

1

8

8 8

1 6

8 8

8

8

(a) Convex, loosely
connected partition

(b) Unrestricted partition
(c) Convex, strictly

connected

Figure 3.1: Example partitions of the StreamIt filterbank benchmark onto a 3-core SMP.
Each node is a kernel, each colour is a task, and each edge is a stream

The choice of partition also affects performance indirectly through its effect on software
pipelining and buffer allocation. Regarding the former, the partition may imply an exces-
sively long software pipeline. Regarding the latter, in the worst case there may not be enough
memory in local stores for the buffers implied by the partition, so the partition may not be
realisable. Or there may only be space for small buffers, which are not sufficient to cover
latencies and short-term variation.

Figure 3.1 shows three partitions for the StreamIt filterbank benchmark on a 3-core SMP.
Each processor has a single task containing the kernels of its colour. Figure 3.1(a) is the
partition generated by the heuristic in Section 3.2. Data flow is from processor p1 (black)
to p2 (grey) and p3 (white), and from p2 to p3—an acyclic graph. Figure 3.2(a) shows an
execution trace, with shades of grey corresponding to five iterations.

Figure 3.1(b) shows a partition that would be optimal, ignoring the cost of software
pipelining. This partition requires software pipelining, since otherwise, as shown in the trace
in Figure 3.2(b), there are many stalls where dependencies prevent computation from being
overlapped; throughput is 53% lower than before. Figure 3.2(c) is pipelined using the stage
assignment phase from the SGMS algorithm [KM08]. It has 0.2% higher throughput than the
convex partition, but due to startup overhead would break even only after 8,000 iterations.

The partitioning problem, even excluding its indirect effects and communications costs,
is NP-hard, so it can only be solved using heuristics. Section 3.2 describes a new heuristic
for the partitioning problem. It considers the loads on the processors and buses, considers
its effect on downstream passes, and models the compiler’s ability to fuse kernels.

3.1.1 Convexity

A partition is convex if the graph of dependencies between tasks is acyclic. Equivalently,
every directed path between two kernels in the same task is internal to that task. The con-
vexity constraint is intended to avoid long software pipelines. As illustrated in the previous
section, a partitioning algorithm unaware of the cost of pipelining may require long pipelines
for a small increase in throughput. The optimal unrestricted partition for the StreamIt 2.1.1

42

CompileTime/Partitioning/asplos06-filterbank-k3-c-test.eps
CompileTime/Partitioning/asplos06-filterbank-k3-unrestricted.eps
CompileTime/Partitioning/asplos06-filterbank-k3-test.eps

3.1 Motivation

p1

p2

p3

0.0s 0.0005s 0.001s 0.0015s 0.002s

(a) Convex partition from heuristic (time: 1.00)

p1

p2

p3

0.0s 0.0005s 0.001s 0.0015s 0.002s

(b) Unrestricted without pipelining (time: 2.11)

p1

p2

p3

0.0s 0.0005s 0.001s 0.0015s 0.002s

(c) Unrestricted partition with pipelining (time: 1.00)

Figure 3.2: Traces for five iterations of filterbank, scheduled using SGMS. Iterations are
identified using shades of grey.

43

CompileTime/Partitioning/paraver-filterbank-k3-test.eps
CompileTime/Partitioning/paraver-filterbank-k3-nonpipelined.eps
CompileTime/Partitioning/paraver-filterbank-k3-unrestricted.eps

3. COMPILE-TIME DECISIONS

serpent benchmark [GTA06] on two Cell B.E.s is 10% faster than the optimal convex par-
tition, but it requires 209 pipeline stages rather than 31. We did not obtain the CPLEX
Solver to evaluate StreamRoller, but since it uses ILP to solve a similar problem, its result
should be similar. This translates into higher memory use, which may simply not fit, as well
as startup overhead and latency. Table 3.1 shows that partitions from our algorithm seldom
require pipelining at all, and performance is, on average, within 5% of optimum.

When the benefit from software pipelining is above some threshold, the algorithm relaxes
connectedness and convexity. Section 3.2.3 shows the partition of vocoder, which benefits
from software pipelining. The result is close to optimal performance using a short pipeline.

3.1.2 Connectivity

The connectedness constraint is primarily to help code generation, since it is easier to fuse
adjacent kernels, whose relative frequencies are known via the stream between them. Fig-
ure 3.3(a) shows a program using the SPM (Section 1.5.2). Kernels read and write per-
form IO, and update manages the automaton and sends only accepting states. The macros
NEW STATE and ACCEPT STATE manage the automaton, and their precise behaviour is irrel-
evant to the discussion. Consider the case where the partition merges read and write into
task 1, with update in task 2. This partition is not convex, so pipelining is required. Task 1
is not connected, so the compiler requires the relative frequencies of read and write.

This can be solved using dynamic scheduling inside the task, by switching between kernels
when a push or a pop starts to wait. Dynamic scheduling may not be supported by the run-
time, and it adds overhead and unpredictability, which are undesirable in real-time embedded
systems. Chapter 4 addresses dynamic scheduling of stream programs. In the absence of
a runtime dynamic scheduler, this example requires either an extra stream carrying the
condition, as in Figure 3.3(b), or duplicating the calculation of the condition, plus the state
on which it is based, which would duplicate the whole update kernel.

The general case requires duplicating state or creating a dependence cycle. Figure 3.4
shows an example, not using the SPM, where each push and pop is guarded by a condition;
e.g. each time k1 fires, it pushes on the stream to k3 whenever a is true and pushes on the
stream to k4 whenever b is true. The relationship between the firing rates of any two kernels
depends on all conditions on the path between them. If k2 and k3 are fused into one task,
then the entire graph must be fused. This is because the task containing k2 and k3 must
know the relationship between their firing rates. If therefore requires some function of e and
f to be sent from k4, and this creates a directed cycle.

A näıve definition of connectivity, strict connectivity, considers a partition to be connected
when each processor has a weakly connected subgraph. Unfortunately, wide split-joins, as in
filterbank, do not usually have good partitions subject to this constraint. In Figure 3.1(a),
p2 (grey) is not strictly connected, so our strict heuristic produces the partition in sub-figure
(c), which has performance 28% worse than (a). In general, strict connectedness allows only
the processors containing the split or the join kernel to have kernels from more than one
branch.

We generalise connectivity by providing to the partitioning algorithm a set of basic con-
nected sets [MB06], each of which specifies kernels that the compiler can pairwise merge. For
strict connectivity, there is a basic connected set for each pair of communicating kernels.

44

3.1 Motivation

int state = 0;

#pragma taskgroup

while (1)

{

#pragma task output(c)

int c = fgetc(fin);

#pragma task input(c)

{

state = NEW STATE(state, c);

if (ACCEPT STATE(state))

{

#pragma task input(state)

fwrite(&state, sizeof(int), 1, fout);

}

}

}

Read

Update

Write

void task 1(void) {

while (1) {

int c = fgetc(fin);

push(stream1, c);

if (pop(stream2)) {

state = pop(stream3);

fwrite(&state, sizeof(int), 1, fout);
}

}

}

void task 2(void) {

int state = 0;

while(1) {

state = NEW STATE(state, pop(stream1));

cond = ACCEPT STATE(state);
push(stream2, cond);

if (cond)
push(stream3, state);

}

}

Read

Write

Update

(a) Source code for automaton (b) Simplified compiled code

Figure 3.3: Motivation of connectivity: example programs with data dependent pushes and
pops

k1

k2

k3

k4

if (a)

if (b)

if (c)

if (d)

if (e)

if (f)

Figure 3.4: If k2 and k3 are fused into one task, then the entire graph must be fused

This allows the partitioning algorithm to be adapted to the compiler and source lan-
guage(s). If the compiler understands StreamIt [TKA02] splitters and joiners, there should
be a basic connected set for each splitter (joiner) containing its successors (predecessors),
which solves the problem outlined above. Similarly, there may also be a basic connected set
covering each region of the program graph that is internally SDF.

3.1.3 Queue sizes

The second problem considered in this chapter is static queue sizing. Double buffering is a
well-known technique to overlap communication and computation. There are two situations,
however, when a stream ought to be allocated more than two buffers. The first is when a
stream covers a long latency or, equivalently, crosses more than one pipeline stage boundary.
The second is when there are short-duration load imbalances due to variable computation
times or communication rates.

The chain8 benchmark illustrates the first situation, and is shown in the upper part of
Figure 3.5. It has eight tasks in a pipeline, with streams between consecutive tasks, and

45

CompileTime/Partitioning/wordhash-spm.eps
CompileTime/Partitioning/wordhash-extc.eps
CompileTime/Partitioning/bad-dependent.eps

3. COMPILE-TIME DECISIONS

another stream between the first and last tasks. Figure 3.5(a) shows the progress of the
first and last tasks relative to the stream between them. The vertical axis is time, and the
horizontal axis is the position in the stream. At any given time the producer is working
on some interval of the stream, which it owns. It starts at the top left of the plot, at
the beginning of both the stream and time, moving to the right when it sends data to the
consumer, and continually downward through time. The figure also shows the progress of
the consumer. The progress of the consumer is also shown.

The periodic pattern of waiting is caused by the interaction between two dependencies.
First, the consumer must wait for its data to arrive, which means that it waits for the
producer, plus the latency of the pipeline. This gives a vertical dependency from producer
to consumer. Second, the producer must wait for an empty consumer-side buffer in which
to send its data, and this gives a horizontal dependency from consumer to producer. The
interaction between these dependencies causes the periodic pattern of waiting.

Figure 3.5(b) is for six consumer-side buffers, which increases throughput by 73%, and
is sufficient for the producer to be always busy. This shows that double buffering was
not sufficient, but also that the number of buffers can be less than one plus the difference
in pipeline stage, which is the number of buffers allocated by StreamRoller [KM08] and
SPIR [CLC+09]; in this case eight.

The second situation is illustrated using the producer-consumer example in the lower
part of Figure 3.5. If the producer and consumer both have fixed computation times and
communication rates, then double buffering is sufficient. Sometimes, single buffering at one
or other end will be enough, even with good load balancing. Figure 3.5(c) shows the progress
of this example, using double buffering, when computation times are normally distributed.
Increasing the number of consumer buffers to five, as shown in Figure 3.5(d), increases
throughput by 20%.

The queue sizing algorithm is based on i) the stream program that has been mapped
onto processors, ii) feedback from an earlier execution, and iii) the memory constraints.
The algorithm exposes a trade-off between throughput and latency. It is general, in that
it applies to stream programs with unstructured stream graphs, and it supports variable
execution times and communication rates.

The inputs to the algorithm are the mapped stream program, a program trace and the
machine description, giving the target topology and memory budgets. A simple model of
computation times and communication rates, such as independent normal distributions and
Poisson arrivals, may be misleading, so the only options are simulation and real execution.
The experimental results use coarse-grain simulation, but real execution could be used in-
stead. The output is the buffer size for the producer and consumer on each stream, which
may be different.

The performance of the queue length assignment algorithm is quantified using the util-
isation, which is the percentage of time that the most heavily loaded processor or bus is
busy. Utilisation is proportional to throughput. If the stream graph is acyclic, at least one
resource ought to be 100% busy. If any resource has utilisation less than 100%, it must be
due to insufficient buffering.

The tradeoff between utilisation and the number of consumer buffers is illustrated in Fig-
ure 3.6. Chain has linearly increasing utilisation until it reaches 100%. Producer-consumer

46

3.1 Motivation

Chain8

t1 t2 t8· · ·

0ms

50ms

100ms

0 40000 80000

Producer, t1Consumer, t8

0 40000 80000

(a) 2 buffers (b) 6 buffers

Producer-consumer

t1 t2

0ms

5ms

10ms

15ms

20ms

0 500 1000 0 500 1000 1500

(c) 2 buffers (d) 5 buffers
Producer work Push Remote Wait Data Sent Pop Wait Consumer work

Figure 3.5: Effect of consumer queue length on chain8 and producer-consumer

47

CompileTime/QueueSizes/chain2.eps
CompileTime/QueueSizes/track-chainmem-2.eps
CompileTime/QueueSizes/track-chainmem-6.eps
CompileTime/QueueSizes/prodcons.eps
CompileTime/QueueSizes/track-prodcons-2.eps
CompileTime/QueueSizes/track-prodcons-5.eps
CompileTime/QueueSizes/track-legend-pwork.eps
CompileTime/QueueSizes/track-legend-prwait.eps
CompileTime/QueueSizes/track-legend-datasent.eps
CompileTime/QueueSizes/track-legend-popwait.eps
CompileTime/QueueSizes/track-legend-cwork.eps

3. COMPILE-TIME DECISIONS

2 4 6 8

0.
4

0.
6

0.
8

1.
0

Number of consumer buffers

R
es

ou
rc

e
ut

ili
sa

tio
n

prodcons: 3 producer buffers
prodcons: 2 producer buffers
prodcons: 1 producer buffer
chain11

Figure 3.6: Memory-performance tradeoff

achieves 99% utilisation with 3 producer and 4 consumer buffers, and additional buffering
yields diminishing returns.

The SPM and StreamIt languages eliminate deadlock, so the objective function depends
only on performance and latency. The interaction between bounded memory in process
networks and deadlock, but not performance, has been explored in depth [Par95; Buc93;
GB03], and these techniques can determine the minimum buffer sizes.

The queue length assignment algorithm is iterative, and consists of a coarse-grain simula-
tor, a cycle detection algorithm, a buffer size update algorithm, and an evaluation algorithm.
The cycle detection algorithm analyses metrics from the simulator, and finds a bottleneck
cycle. The buffer update algorithm chooses the initial buffer allocation, and adjusts buffer
sizes to resolve the bottleneck. The evaluation algorithm monitors progress and decides when
to stop, choosing the buffer allocation that achieved the best performance-latency tradeoff.

3.2 Static partitioning

3.2.1 The partitioning problem

The target is represented as an undirected bipartite graph H = (V,E), where V = P ∪ I
is the set of vertices, a disjoint union of processors, P , and interconnects, I; and E is the
set of edges. Each processor, p, has weight, wp, equal to its clock speed in GHz, and each
interconnect, u, has weight, wu, equal to its bandwidth in GB/s. The static route between
processors p and q is represented by ru

pq = 1 if it uses interconnect u, and 0 otherwise. In
general, ru

pq 6= ru
qp; e.g. dimension-order routing on a mesh. Figure 3.8 shows the topology

of our example targets, omitting the edge and vertex weights and the routing table. This
representation is a simplified form of the Abstract Streaming Machine (ASM).

The program is represented as a directed acyclic graph, G = (K,S), where K is the set
of kernels, and S is the set of streams. If the program is cyclic, then each strongly connected
component is contracted into a single vertex. The load of kernel i on processor p, denoted
cip, is the mean number of gigacycles in some fixed time period τ . Similarly, the load of
stream ij, denoted cij is the mean number of gigabytes transferred in time τ .

48

CompileTime/QueueSizes/motivplot-util.eps

3.2 Static partitioning

Unrolling
and splitting

Partitioning

Queue length
assignment

Initial partition

Merge tasks

Move bottlenecks

Create tasks

Reallocate tasks

Buffer size
update

Coarse grain
simulation

Cycle
detection

Partition

Allocation

Metrics

Bottleneck

E
valu

ation

Final
allocation

Fail

Figure 3.7: The mapping phase of the ACOTES compiler, showing the partitioning and
queue sizing algorithms

The basic connected sets are a collection, C = {Cj}, of subsets of K, where each Cj is
a set of pairwise connected kernels. A subset L ⊆ K is connected if, for any pair of kernels
k, k′ ∈ L, there is a sequence k = k1, k2, · · · , kn = k′, with each ki ∈ L and each pair of
consecutive kernels, ki and ki+1, connected by being members of some Cj. The whole set of
kernels, K, should be connected.

The output of the algorithm is two map functions. Firstly, T maps kernels onto tasks,
and secondly, P maps tasks onto processors. The partition implied by T must be convex, so
the graph of dependencies between tasks is acyclic.

Let Tp = P−1(p) be the tasks on processor p, and Kt = T−1(t), Kp =
⋃

t∈Tp
Kt be

the kernels on task t or processor p. The graph of t is the induced graph, Gt = G(Kt),
containing the kernels in t and internal streams. The task dependence graph GT is the result
of contracting each task in G into a single vertex.

The cost on processor p or interconnect u is

Cp =
∑

i∈Kp

cip

wp

Cu =
∑

p,q∈P

ru
pq

∑

i∈Kp,j∈Kq

cij

wu
.

The goal is to find the allocation (T, P), which minimises the maximum values of all the
Cp and Cu, subject to the convexity and connectedness constraints.

Predicting memory use of tasks

When multiple kernels are fused into one task, the algorithm needs to predict the memory
use of the task, given the memory use and composition of each kernel. Finding the minimum

49

CompileTime/compiler-stages.eps

3. COMPILE-TIME DECISIONS

p1 p2 p3

i1

p1 i1 p2

i2 i3

p3 i4 p4

(a) SMP with three processors (b) 2× 2 mesh

p11 p13 p15 p17 p21 p23 p25 p27

i1
a i3 b

i2

p12 p14 p16 p18 p22 p24 p26 p28

(c) IBM QS20 with two Cell processors (SPEs only)

p1 p2 p3 a1

i1

(d) SMP 3 with accelerator (a1)

Figure 3.8: Topology of the targets used in this section (interconnects are shown as shaded
rectangles)

memory use is an NP-complete problem [BML96], even ignoring the possibility to overlap
the buffers for two or more streams. Not only that, but the partitioning algorithm needs to
predict, or at least bound, the memory use from the actual compiler, which is unlikely to be
the theoretical minimum.

This algorithm assumes that the combined code size is the sum of the code sizes for the
kernels, and that the total memory size is one block, plus the length of the history, for each
internal stream, and the original memory size for each external stream. This calculation is
orthogonal to the rest of the algorithm.

3.2.2 The partitioning algorithm

The partitioning algorithm is split into two phases. The first phase produces an initial
partition that is both convex and connected, with at most one task per processor. The
second phase, refinement, improves the initial partition, and has some ability to escape from
local minima; it can also create multiple tasks per processor.

The first phase could produce a trivial initial partition, which has all kernels in a single
task, assuming enough memory. Our results show that the refinement phase still finds a
good partition. A good initial partition, however, decreases the total time of the mapping
algorithm, since it requires fewer passes of the refinement phase.

The refinement phase uses several algorithms based on Kernighan and Lin’s graph parti-
tioning algorithm [KL70], and is repeated until there is no further improvement. The main

50

CompileTime/Partitioning/smp3.eps
CompileTime/Partitioning/mesh2x2.eps
CompileTime/Partitioning/2cell.eps
CompileTime/Partitioning/smp3acc.eps

3.2 Static partitioning

P1 {p1, p3} I {i1, i4} P2 {p2, p4}

2 2 2

K1

K2

x

y

z

t
11

11

9

9
20

4

4

20

(a) First level partition of the target in
Figure 3.8(b)

(b) Stream program and first level partition

{φ, φ}

{x, φ}

{φ, xyzt}

{xy, φ} {x, yt}

{xyzt, φ} {xy, zt} {xz, yt} {x, yzt}

lb = 0, ub = 20

lb = 5.5
ub = 29

cost = 20

lb = 11
ub = 11

lb = 9
ub = 29

cost = 20 cost = 11 cost = 20 cost = 29

(c) Branch and bound search for first level partition

Figure 3.9: First level partition in the initial partition algorithm

step offloads kernels from bottleneck processors, while maintaining connectedness and con-
vexity. If this produces no benefit, then one additional task is created, if enabled, and the
new partition is kept if the improvement is larger than some threshold (currently 5%).

Initial partition

The initial partition is generated by recursively subdividing the target and program graphs
into halves, mapping each half separately. This continues until there is either a single kernel,
which is mapped to some processor, or a single processor, which executes all kernels.

Partitioning the target The algorithm first divides the target into two subgraphs, P1

and P2, and an aggregate interconnect, I, balancing two objectives: the subgraphs should
have roughly equal total CPU performance, and the aggregate interconnect bandwidth be-
tween them should be low. Figure 3.9(a) shows the result of dividing the mesh target from
Figure 3.8(b).

51

CompileTime/Partitioning/cut2mesh.eps
CompileTime/Partitioning/bad-alloc-stream-hammock.eps
CompileTime/Partitioning/branch-and-bound.eps

3. COMPILE-TIME DECISIONS

The optimal target partition is found as follows. First, the communications bottleneck
for uniformly random traffic between P1 and P2 is given by

C = max
u∈I

∑

p∈P1,q∈P2

ru
pq + ru

qp

wu
. (3.1)

The target is divided into halves to maximise α, the product of C with the total perfor-
mance of the less powerful of P1 or P2

α = C min (
∑

p∈P1

wp,
∑

q∈P2

wq). (3.2)

An approximate solution is found using an adaptation of the Kernighan and Lin parti-
tioning algorithm.

Partitioning the program The program (sub)graph is given edge and vertex weights.
The edge weight for stream ij, denoted cij is the cost in cycles in time τ , if assigned to the
aggregate interconnect, rather than internal to P1 or P2. The vertex weight for kernel i is
a pair (ciP1 , ciP2), the cost of assigning it to P1 or P2, respectively. The goal is to find a
two-way partition {K1,K2} to minimise the bottleneck given by

c = max (
∑

i∈K1

ciP1 ,
∑

j∈K2

cjP2,
∑

i∈K1,j∈K2

cij). (3.3)

The partitioning algorithm is a branch and bound search. Each node in the search tree
inherits a partial partition (K1,K2), and unassigned vertices X; at the root K1 = K2 = φ
and X = K. It chooses some kernel v ∈ X, adjacent to K1 with K1 ∪ {v} convex and
connected (or any v if K1 is empty) then switches on either adding v and its ancestors to
K1, or v and its descendants to K2. If adding vertices to K1 would cause K2 ∪X to become
disconnected, then the subtree contains no connected partitions, so is pruned.

Figure 3.9(b) and (c) show a program and its branch and bound search, with each node
labelled by its sets K1 and K2. The minimal cost, cK1K2, for all partitions in the subtree
rooted at node (K1,K2) is at least as large as the partial sum on the vertices already assigned:

cK1K2 ≥ lb = max (
∑

i∈K1

ciA,
∑

i∈K2

ciB ,
∑

i∈K1,j∈K2

cij). (3.4)

Any valid partition in the subtree gives an upper bound on the optimal cost in that
subtree. Since (K1,X ∪K2) is always valid:

cK1K2 ≤ ub = max (
∑

i∈K1

ciA,
∑

i/∈K1

ciB,
∑

i∈K1,j /∈K1

cij). (3.5)

In Figure 3.9(c), the node marked {x, φ} has K1 = {x} and K2 = φ. The known cost on
P1 is 5.5, being the cost of kernel x divided by the performance of P1. The known costs on
P2 and the interconnect are both zero. Hence by Equation (3.4), lb = max(5.5, 0, 0) = 5.5.
Similarly, by Equation (3.5), the upper bound on the optimum is the cost of partition
{x, yzt}, so ub = 29.

The search algorithm tries to quickly find a good partition, so that more of the search tree
is pruned by having its lower bound greater than some upper bound. It uses a depth-first
search, and chooses vertex v adjacent to K1 (as it must) with the highest cost on whichever
processor currently has the greatest load, then first considers adding it to the other processor.

52

3.2 Static partitioning

Refinement of the partition

The refinement stage starts with a valid initial partition, and improves it by applying the
optimisation passes described below. As shown in Figure 3.7, these steps are applied in
sequence, and iterated until no further improvement is seen. The optimisation passes are:

Merge tasks A greedy algorithm merges low cost tasks and has the effect of freeing pro-
cessors and reducing communications

Move bottlenecks The main optimisation pass moves kernels from bottleneck processors

Create tasks Create a new task to relax the connectedness and convexity constraints, and
keep the new partition if the benefit is larger than some threshold

Reallocate tasks A greedy algorithm improves the allocation of tasks to processors

The passes are described in detail below.

Merge tasks This step uses a greedy algorithm to merge tasks whose union is convex and
connected, as long as it does not cause a new bottleneck. This pass often reduces bus traffic,
and frees up processors so they can accept kernels without restriction. Since there are usually
far fewer tasks than kernels, define the basic connected sets of tasks: Dj = {T (k) : k ∈ Cj},
where T (k) was defined earlier as the task containing kernel k, and set D = {Dj : |Dj | ≥ 2}.
In this case, the union of T1 and T2 is connected if {T1, T2} ⊆ Dj , some Dj ∈ D.

Section 3.2.1 defined the task dependence graph, GT , as the directed acyclic graph on
the tasks. Define d(T1, T2) = 1 if there is a path from T1 to T2 of length two or more, and
0 otherwise. This can be calculated in time O(|T |2), using a topological sort. The greedy
algorithm finds, using a branch and bound search, the connected pair of tasks T1 and T2

with minimum total cost on either of their current processors, such that d(T1, T2) = 0. If the
bottleneck cost after merging is no greater than the current bottleneck cost, then the tasks
are merged and allocated to the processor on which they have the minimum total cost. The
algorithm continues until no more tasks can be merged.

Move bottlenecks This pass identifies a bottleneck processor, p1, then considers moving
a set M1 of kernels from some task on p1 to a task on another processor, q1, without violating
convexity or connectedness. The cost metric to minimise is the maximum of the costs on p1,
q1 and all interconnects, after the move:

C = max(Cp1, Cq1,max
u∈I

Cu). (3.6)

This metric excludes the other processors, otherwise if some other processor had the same
cost as p1, its contribution would hide the benefit of any move.

Some kernels must be moved, even if doing so has a negative benefit—hence the algorithm
has some ability to escape from local minima. After tentatively moving set M1, record the
bottleneck cost and identify the new bottleneck processor, p2, which may still be p1, and
tentatively move a set M2 to another processor. It continues moving kernels, with the
constraint that no kernel can be moved back to a processor that it has previously been

53

3. COMPILE-TIME DECISIONS

allocated to. For instance, none of the kernels in M1 may be tentatively moved back to p1,
but they may be moved a second time to another processor. This process continues until
either there are no remaining valid moves, or a fixed limit, currently 50 moves, is reached.
The final partition is that of the intermediate point in the algorithm with the maximum
overall performance.

Any kernel, k, can potentially be moved to any task on a different processor if there is a
kernel k′ on the new task that shares a basic connected set with k. There are three additional
requirements. Firstly, if k is neither a source nor a sink in its current task, T , then T − {k}
cannot be convex. It is always necessary to move either k and all its ancestors in T , or
k and all its descendants in T . Secondly, it is necessary to check, using a breadth-first or
depth-first search on the basic connectivity sets, whether the remainder of the old task is
still connected. Thirdly, there are several ways that the move can create a cycle in the task
dependency graph, and this can be checked using a topological sort.

Create tasks This pass moves a kernel k on a bottleneck processor onto another processor,
creating new tasks as necessary to become convex and connected. It then runs the Move
Bottlenecks pass, with the restriction that the kernel cannot be moved from its new processor.
The new partition is kept if the performance is improved by more than some threshold,
currently 5%.

The most expensive kernel, on its current bottleneck processor, is considered first. This
kernel may be moved to any processor in use for which the cost of the kernel is less than the
current bottleneck cost. There is no advantage in moving a kernel to an unused processor,
since that is the first thing that the Move Bottlenecks pass would do. If there are no valid
choices, then the second most expensive kernel on the same processor is considered, and so
on.

Kernel k is placed on some other processor in order to minimise the sum of the weights
of the large kernels, including k, on the new processor; the large kernels are those of weight
at least half that of the kernel being moved. The reason for ignoring lightweight kernels is
that these are most likely to be able to be easily offloaded onto other processors.

Reallocate tasks The reallocation pass decreases communications traffic by permuting
the loads on the processors. This pass is executed even if the bottleneck is on one of the
processors. It only moves tasks between similar processors attached to different buses. Sim-
ilar processors are those for which all kernel computation times are identical. For instance,
it can permute the four processors on the 2× 2 mesh target, or SPEs on different processors
on the two-Cell QS20 target.

The algorithm is similar to Kernighan & Lin, in that it swaps similar processors in a
greedy manner to minimise the maximum load on the buses, even if doing so makes the
bottleneck worse. After swapping the loads on two processors, they are fixed for the rest of
the pass. The algorithm continues until there are no processors left, and outputs the best
partition seen.

3.2.3 Evaluation

This section uses the StreamIt 2.1.1 benchmarks [GTA06] to evaluate our heuristic algorithm
and convex connected partitions in general. The StreamIt benchmarks have the two-terminal

54

3.2 Static partitioning

20 40 60 80 100 120 140

1.
00

1.
01

1.
02

1.
03

1.
04

Number of iterations

A
ve

ra
ge

 n
or

m
al

is
ed

 c
os

t

*

* * * *

*
* *

* *
* *

+
+

++++

++

*
+

2x2 mesh
SMP of 3
IBM QS20 (2 Cell)

20 40 60 80 100 120 140

1
2

3
4

5

Number of iterations

A
ve

ra
ge

 n
or

m
al

is
ed

 c
os

t

*
*

*

*

*

*

*
*

*
*

* * * * * *
* *

++
+

+
+++

+++

*
+

2x2 mesh
SMP of 3
IBM QS20 (2 Cell)

(a) Recursive initial partition (b) Trivial initial partition

Figure 3.10: Convergence of the refinement phase as a function of the number of iterations

strictly connected
loosely connected
loosely connected & sw pipelining

bi
to

ni
c−

so
rt

ch
an

ne
l

dc
t

de
s fft

fil
te

rb
an

k

fm

m
pe

g2

ra
da

r

se
rp

en
t

td
e

vo
co

de
r

A
ve

ra
ge

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7
bi

to
ni

c−
so

rt

ch
an

ne
l

dc
t

de
s fft

fil
te

rb
an

k

fm

m
pe

g2

ra
da

r

se
rp

en
t

td
e

vo
co

de
r

A
ve

ra
ge

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

(a) SMP with three processors (b) 2× 2 mesh

bi
to

ni
c−

so
rt

ch
an

ne
l

dc
t

de
s fft

fil
te

rb
an

k

fm

m
pe

g2

ra
da

r

se
rp

en
t

td
e

vo
co

de
r

A
ve

ra
ge

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

bi
to

ni
c−

so
rt

ch
an

ne
l

dc
t

de
s fft

fil
te

rb
an

k

fm

m
pe

g2

ra
da

r

se
rp

en
t

td
e

vo
co

de
r

A
ve

ra
ge

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

(c) IBM QS20 (two Cell processors) (d) SMP 3 with accelerator

Figure 3.11: Normalised execution time for the StreamIt 2.1.1 benchmarks for the three
variants of the heuristic algorithm. The unrestricted partition has execution time 1.0, and
larger bars are slower.

55

CompileTime/Partitioning/rate-of-conv-c.eps
CompileTime/Partitioning/rate-of-conv-ct.eps
CompileTime/Partitioning/results-legend.eps
CompileTime/Partitioning/results-smp3.eps
CompileTime/Partitioning/results-mesh2x2.eps
CompileTime/Partitioning/results-cell.eps
CompileTime/Partitioning/results-smp3acc.eps

3. COMPILE-TIME DECISIONS

Benchmark
Num.

kernels
Width

Number of pipeline stages for unrestricted & heuristic

SMP 3 2×2 Mesh QS20 (2 Cell) SMP 3 + Acc.
u h u h u h u h

bitonic-sort 40 4 27 (5) 35 (7) 35 (19) 9 (7)
channel 55 17 11 (5) 9 (7) 9 (7) 9 (5)
dct 8 1 9 (5) 9 (7) 9 (9) 13 (5)

des 53 3 77 (31)
fft 17 1 13 (5) 27 (7) 33 (23) 17 (7)
filterbank 85 16 19 (5) 19 (7) 23 (9) 19 (5)

fm 43 12 9 (5) 17 (5) 21 (9) 17 (5)
mpeg2 23 5 23 (5) 19 (7) 29 (19) 15 (7)
radar 57 12 13 (5) 9 (5) 19 13 19 (5)

serpent 120 2 143 (5) 163 (7) 209 (31)
tde 29 1 39 (5) 41 (7) 57 33 23 (9)
vocoder 114 17 29 7 29 (7) 29 (7) 45 11

Average ratio 5.9 5.0 2.4 2.8

Table 3.1: The number of pipeline stages for the optimal unrestricted partitions and the
partitions generated by our heuristic (loosely connected with pipelining). Partitions that do
not need pipelining are in parentheses.

series-parallel structure of StreamIt, but are the most widely used streaming benchmarks.
The program graph, work estimates and data rates were taken from the StreamIt 2.1.1
compiler. The StreamIt compiler modifies the stream program graph before calculating the
work estimates, so our kernel counts differ from those of the source program. The number
of kernels ranges from 8 to 120, and has average 54.

Figure 3.10 shows performance vs. iteration in the refinement phase. At each point is
plotted the minimum of all partitions seen so far. This graph shows that the refinement
algorithm quickly converges to a good solution, even from a trivial initial partition. It also
shows that the initial partition is on average within 4% of the performance of the final
partition, although the worst case is 33% slower. The sub-figures have very different scales
on the vertical axes. The graphs show the number of iterations rather than time, since
the algorithm was implemented in unoptimised Python. Nevertheless, the per benchmark
partitioning time on a 2GHz Intel MacBook is average 10.0 seconds and maximum of 58.4
seconds.

Figure 3.11 shows the normalised execution time for the partitions found by the heuristic,
using strict and loose connectivity, against the optimal unrestricted partition, which has
time 1.0. The strictly connected partitions for channel, filterbank, fm and radar have bad
performance because of the wide split joins. The third column of Table 3.1 gives the width of
each benchmark, which is the maximum size of a subset of kernels with no paths between any
pair of them (an anti-chain). For example, the filterbank benchmark, illustrated in Figure 3.1,
has a width of 16. The benchmarks with poor performance using strict connectivity tend to
be the benchmarks with the largest width, although this is a great simplification.

Figure 3.11 also shows the bottleneck cost for the loosely connected partition generated
by our heuristic when software pipelining is enabled. Software pipelining is most beneficial
for the vocoder benchmark on SMP3 with accelerator, and radar on IBM QS20. Figure 3.12
shows the partition of vocoder on SMP with accelerator found using the heuristic, which
uses eleven pipeline stages if scheduled using the stage assignment phase of the SGMS algo-
rithm [KM08]: six for computation and five for DMA. The main improvement in throughput

56

3.2 Static partitioning

A

B

Processor p1, load 96%

Processor p2, load 60%

Processor p3, load 87%

Accelerator a1, load 100%

Figure 3.12: Vocoder benchmark on SMP 3 with accelerator using software pipelining.

comes from splitting the workload on a1 into two tasks. This benchmark has two heavy-
weight kernels that should run on the accelerator, but the cost of the smallest convex task
containing both of them is very large. The optimal unrestricted partition is 9% faster, but
it requires 45 pipeline stages.

The only bad results are des, serpent, and tde on IBM QS20. These three suffer since our
fast algorithm gets stuck in a local optimum. These benchmarks suggest some limitations
of the Create Task stage, which could be addressed in future work. The des and serpent
benchmarks finish with two or more tasks of identical cost. The Create Task stage offloads
a kernel from one of the bottleneck tasks, but since it does not reduce the cost of the other
bottleneck(s), the move is rejected as not worthwhile. The tde benchmark finishes with the
bottleneck task containing a heavyweight kernel. The Create Task stage tries to move the
heavyweight kernel to another processor, but it cannot find a better solution. It may have
been better to move some of the lighter kernels from the bottleneck task. Since the problem
is NP-hard, all heuristics will at times find suboptimal solutions.

Table 3.1 shows the pipeline lengths for the unrestricted and heuristic partitions. The
pipelines were generated using SGMS [KM08], so half of the pipeline stages perform com-
putation. The partitions that do not require software pipelines are given in parentheses.
Some of the cells for the unrestricted partitions are empty, since finding the true optimum
is slow (Figure 3.11 uses a lower bound). The unrestricted partitions for serpent and tde on
Cell have long software pipelines because the programs themselves are long pipelines, and
unless it is bus bound, there is no incentive for short pipelines. There are four data points
in Figure 3.11 where our heuristic algorithm used software pipelining.

57

CompileTime/Partitioning/asplos06-vocoder-smp3acc-uc-test.eps
CompileTime/Partitioning/vocoder-legend.eps

3. COMPILE-TIME DECISIONS

SPE1 SPE2 SPE8

LS1 LS2 LS8

Processors, P :

Memories, M :

Figure 3.13: Memory constraint graph for the Cell Broadband Engine

3.3 Static buffer sizing

3.3.1 The buffer sizing problem

Queue length assignment seeks to find an optimal tradeoff, subject to memory constraints,
between throughput and latency. We wish to find a close to Pareto optimal solution: that
is, neither latency nor throughput can be improved without making the other one worse.
Memory use is kept within the constraints, rather than being minimised.

The stream program is represented as a connected, not necessarily acyclic, digraph,
P = (T, S), where T is the set of vertices (tasks), and S is the set of edges (streams). Each
stream s has a producer and consumer buffer size in bytes, bp(s) and bc(s), and a minimum
number of buffers, sufficient to hold the working set and avoid deadlocks. If P is acyclic, as for
ACOTES, deadlock is impossible; otherwise minimum sizes can be found using algorithms
in the literature [Par95; Buc93; GB03]. The algorithm determines the actual number of
buffers, np(s) and nc(s).

Each task has a trace, which is an alternating sequence of computation times and prim-
itives. The are four communications primitives given in Section 2.3: ProducerAcquire and
ConsumerAcquire obtain a buffer to write or read data. ProducerSend and ConsumerDiscard
send or discard data once complete.

The traces are interpreted using the ASM coarse-grain simulator, which takes a machine
description that defines the target. Queue length assignment needs only the memory con-
straints, which are represented using a bipartite graph, H = (R,E). The set of vertices,
R = P ∪M , is a disjoint union of processors P and memories M , and the edges, E, connect
processors to their local memories. Each memory has weight equal to the amount of memory
available, in bytes, for stream buffers. Figure 3.13 shows the memory constraint graph for
the Cell Broadband Engine; the memory weights depend on how much memory is already
being used.

The evaluation algorithm in Figure 3.7 and experimental results in Section 3.3.3 both
require an estimate of latency. Since it is orthogonal to the rest of this section, and only
differences in latency matter, we propose the following scheme.

Define ft(n) to be the time of firing, n = 0, 1, · · · ,Mt − 1 of task t, taken from the fire
primitive. Since each task contributes to a common amount of real-world progress, normalise
n to the interval 0 ≤ x < 1 by dividing it by Mt. Then gt(x) = ft(⌊Mtx⌋) gives the time
that task t was proportion x ∈ [0, 1) through the calculation. The latency, L(x), is the
difference between the largest gt(x) for a sink and the smallest gt(x) for a source, which can,
unfortunately, be negative when multiplicities are variable. The latency is the average value
of L(x).

58

CompileTime/QueueSizes/cell-mem.eps

3.3 Static buffer sizing

ProducerAcquire

ProducerSend

ConsumerAcquire

ConsumerDiscard

(448, 0) (0, 1) (480, 0) (0, 1)(13, 1)
(13, 0)

(13, 1)

Style Waiting primitive (§3.3.1)
Bold ProducerAcquire
Dashed ConsumerAcquire
Solid ProducerSend
Dotted Computation

(a) Timed event graph (b) Types of edge

Figure 3.14: Example timed event graph used by the critical cycle algorithm

3.3.2 The buffer sizing algorithm

This section describes several algorithms for cycle detection and buffer size update. It first
reviews the standard critical cycle detection algorithm, and explains when it is applicable.
It then introduces the baseline algorithm, which finds the bottleneck cycle by analysing the
time each task is blocked on each stream. This data is easy to obtain, and the algorithm
is quite effective. It then gives an example that the baseline algorithm gets wrong, and
proposes the token algorithm, which requires extra bookkeeping but achieves better results.
Finally, it describes several variants on the buffer update algorithm, which have different
tradeoffs between speed of convergence and latency.

Cycle detection algorithms

Critical cycle algorithm The critical cycle algorithm [IP95; DG98; GG93] solves the
cycle detection problem for homogeneous Synchronous Data Flow (SDF) [LM87] with con-
stant computation times and communications latencies. In homogeneous SDF, every time
a producer or consumer fires, it pushes or pops a single buffer on each stream. All tasks
therefore fire at the same rate. The algorithm can be extended to SDF, where each producer
or consumer pushes or pops any fixed number of buffers, but it requires expanding the graph,
which can make it much bigger [Lee86].

Figure 3.14(a) shows how producer-consumer, assuming a single buffer at each end, is
represented by this algorithm. Each vertex is the return from a communications primitive.
The edges are distinguished, for the diagram but not the algorithm, using the convention in
Figure 3.14(b), which refers to the primitives in Section 2.3. Each edge has weight, which
is its fixed computation time or communications latency, and height, which is the fixed
difference between the firing number, which counts the number of times a task has fired, at
its two ends.

For example, at the producer side, the dotted line from ProducerAcquire to ProducerSend,
of weight 448 and height 0, represents computation inside a single iteration. The bold line
in the reverse direction, of weight 13 and height 1, is because the producer cannot reuse its
single buffer in the current firing until the previous DMA has completed.

Throughput is constrained by the critical cycle, which is a cycle with maximum ratio of
total weight divided by total height. There are several algorithms to find such a cycle, many
based on Karp’s Theorem [Kar78], in time O(|S|2|T |) or so [DG98], using the terminology
of Section 3.3.1.

59

CompileTime/QueueSizes/classic-prodcons.eps

3. COMPILE-TIME DECISIONS

t0

t1

t2

t0

t1

t2

0.27

0.34

0.37

t0

t1

t2

0.77

0.09
0.05

0.13

(a) Program (b) Wait-for graph (c) (t0) has zero strength

Figure 3.15: Example weighted wait-for graphs

Baseline algorithm Our baseline algorithm is more general, because it supports variable
data rates, computation times, and communication latencies. It finds the bottleneck by
analysing wait times in a real execution or simulation.

Figure 3.15 shows how the stream program and wait times are represented by the al-
gorithm. Figure 3.15(a) is an example stream graph with three tasks in a triangle. Fig-
ure 3.15(b) is the wait-for graph, which has the same three edges per stream as the timed
event graph. Following convention for wait-for graphs, the arrows point in the opposite di-
rection, from the waiting task. The weight of an edge is the proportion of the total time
that the task at the initial vertex, or tail, spent waiting in its communications primitive.
The diagram shows three of the edge weights; the other weights will not be important in the
discussion.

As for the critical cycle algorithm, performance is constrained by dependence cycles in the
wait-for graph. The algorithm uses two bounds, one local and one global, on the maximum
increase in performance from relaxing a cycle; i.e. increasing buffering on one of the streams
in the cycle that gets full.

Consider the potential benefit from relaxing cycle C1 = (t0 t2 t1). This can only be done
by increasing buffering on the stream from t0 to t2. Since t1 waits for 27% of the time, during
the ConsumerAcquire primitive in this cycle, we could reduce the execution time of t1 by at
most 27%, before the cycle disappears. Since all tasks execute for nearly the same amount
of wallclock time, any change in throughput will cause all vertices to have their total waiting
time, not just on the edges of this cycle, reduced by the same amount. It is therefore likely
that the edge in the cycle that disappears first is its weakest edge.

The local bound is the weight of cycle C, denoted w(C), which is the minimum weight of
its edges. If there is no cycle with non-zero weight, then utilisation is already 100%. This is
because every directed acyclic graph has a vertex with no outgoing edge, which corresponds
to a task that never has to wait.

Figure 3.15(c) is the motivation for the global bound. The maximum weight cycle is the
loop on t0, of weight 0.13, which we will call C2. A moment’s reflection, however, shows that
C2 cannot really be a bottleneck since neither t1 nor t2 ever wait for t0, even indirectly. If we
reduced the time t0 spent waiting on this loop, it cannot make t1 or t2 go any faster. Since
throughput would be unchanged, t0 must spend the same total amount of time waiting, so
the waiting time would move from ProducerAcquire to ProducerSend (see Figure 3.14(b)).

The global bound is the strength of the cycle, denoted s(C), which is the lowest value of
the maximum flow through a single path to the cycle, starting from any other vertex. Since

60

CompileTime/QueueSizes/waitfor-prog.eps
CompileTime/QueueSizes/waitfor-graph.eps
CompileTime/QueueSizes/pwait.eps

3.3 Static buffer sizing

there is no path at all from t1 to C2 in Figure 3.15, the cycle has zero strength: s(C2) = 0.
In contrast, the cycle (t1 t2) has strength 0.77, because this is the weight of the only path
from the only other vertex, t0. Increasing the performance of t1 and t2 by any means could
reduce execution time of the program as a whole by 77%. This cycle is the bottleneck, and it
has weight 0.05. The requirement that flow be through a single path makes little difference
in practice, but it reduces considerably the algorithmic complexity.

It is possible for the wait-for graph to be disconnected; e.g. when tasks wait for each
other only through bus contention. This happens rarely, but it causes all strengths to be
zero. Therefore, when all strengths are zero but the utilisation is below some threshold
(currently 100%), the strengths are ignored. Since it almost never happens, there is little
reason to be more sophisticated.

The strength of each vertex is found by computing the all-pairs bottleneck paths [Pol60].
This finds, for every pair of vertices, the value of the maximum flow through a single path
from the first vertex to the second. It is solved using a variant of Dijkstra’s algorithm, running
Dijkstra for each vertex to find the maximum flow paths into it. The strength of that vertex
is given by the path with the lowest flow. The total execution time is O(|S||T |+ |T |2log|T |),
using a Fibonacci heap [FT87b; VWY07], with the terminology of Section 3.3.1.

The algorithm finds a cycle with the maximum value of the minimum of the local and
global bounds. It is straightforward to show that we can take account of both simply by
replacing the weight of every edge e = (a, b) by a new weight, w′(e) = min (w(e), s(a)). A
maximum weight cycle, according to w′, can be found in time O(|S| log |S|), where S is the
set of streams. To find out whether there is a cycle of weight ≥ W , for some W , just check
whether there is any cycle if you ignore all edges of weight < W . This can be done in time
O(|S|) by attempting to perform a topological sort. To find a maximum weight cycle, first
sort the edge weights, and perturb them so that no two are exactly the same. Then use
bisection on the sorted edge weights.

The baseline algorithm uses data that is easy to obtain, and is usually quite effective,
but it has one limitation. Since each task is represented by a single vertex, it cannot “see”
what is happening inside them.

Figure 3.16(a) shows the wait-for graph for an example where the baseline algorithm
makes a bad decision. The maximum weight cycle is (t1 t0 t2), which has weight 0.50.
Whether or not this is a bottleneck depends on the internal behaviour of tasks t1 and t2. The
order of operations per firing of task t1 is shown in Figure 3.16(b). If it is also known that
task t1 always waits in step 5, then reducing the waiting time in step 1 will simply result in
a longer waiting time in step 5. It can never advance the push in step 6, so the critical cycle
cannot be (t1 t0 t2). The next section introduces the token algorithm, which addresses this
problem, and describes the indirect wait-for graph in Figure 3.16(c).

Token algorithm The token algorithm addresses this problem by tracking dependencies
through tasks. This is somewhat similar to causal chains [BH01], except that the aim is
to resolve performance bottlenecks rather than artificial deadlocks. Their algorithm fixes a
deadlock after it happens, when all tasks have got stuck, but we cannot expect all tasks in
a cycle to ever be waiting simultaneously.

During the simulation, or at runtime in a dynamic scheme, each task t has a current
token, St, which is the stream that most recently made t wait, directly or indirectly, because

61

3. COMPILE-TIME DECISIONS

t3

t0

t1

t2

0.52 s01
1.00

s02

0.50

s12
0.48

s13

0.52

s23

(a) Wait-for graph

Primitive Wait
time

1. ConsumerAcquire(s01, 0) 0.52
2. ProducerAcquire(s13, 0) n/a
3. ProducerAcquire(s12, 0) n/a
4. ConsumerDiscard(s01) n/a
5. ProducerSend(s13) 0.48
6. ProducerSend(s12) n/a t3

t0

t1

t2

s02

s13

0.52

0.48

0.98

0.48

0.48

0.48

0.47

(b) Order of primitives in t1 (c) Indirect wait-for graph

Figure 3.16: Example where baseline fails

it got full. It has a current waiting time, Wt, which measures how much the task has already
had to wait, so that only increases in waiting times are charged to streams. It also has
a waiting vector, (Vt)s, which gives the total waiting time for each stream in the whole
program. Each consumer buffer c has a current token, Sc, and current waiting time, Wc,
which together record the producer’s problem at the time the block in that buffer was sent.

When task p blocks for time τ because output stream s is full, it sets Sp ← s and increases
both Wp and Vp[s] by τ . When task p sends a block using buffer c on output stream s, it
records a copy of its current state: Sc ← Sp and Wc ← Wp. When a task q blocks for time
τ because input stream s is empty, it also, after the data arrives, reads Sc and Wc, from the
consumer buffer c containing the end of the data. It then updates its current token Sq ← Sc

to indicate that it had to wait, indirectly, for whichever stream the producer had to wait for,
and calculates the increase in current waiting time ∆Wq ← min(τ,Wc −Wq), which can be
either positive or negative. If it is positive, then Vq[Sq] is increased by ∆Wq. In either case,
the current waiting time is then updated using Wq ←Wq + ∆Wq.

The waiting vectors are used to construct an indirect wait-for graph, as shown in Fig-
ure 3.16(c). If Vt[s] > 0, there is an edge from task t to stream s with weight Vt[s]/L, where
L is the total execution time of the run, in the same units. Each stream s also produces an
edge from s to its consumer q. The weight of this edge is s(q), the strength of q, as defined
for the baseline algorithm.

This is effectively viewing each stream as an actor in its own right, which is always
blocked waiting for the consumer to discard its data. This is the most convenient place to

62

CompileTime/QueueSizes/baseline-bad-baseline.eps
CompileTime/QueueSizes/token-bad-baseline.eps

3.3 Static buffer sizing

t0

t1 t2 t3

t4 t5 t6

s01

s03

s04

s06

t0

t1 t2 t3

t4 t5 t6

s03

s06

0.25

0.49 0.49 0.48

0.25

0.50 0.50 0.50

(a) Stream graph for bichain4 (b) Indirect wait-for graph

Figure 3.17: Token algorithm: bichain4 example

take account of the strengths, which are still relevant by the same argument as before. The
token algorithm finds the maximum weight cycle in the same way as the baseline algorithm.

Figure 3.17 shows a second example which clarifies the need for the cycle-based algorithm
outlined above. In the stream program of Figure 3.17(a), task t0 pushes the outputs in the
cyclic order (s01 s03 s04 s06), waiting only in ProducerSend for streams s03 and s06 due to
their longer latency.

When it pushes on stream s04 of the right branch, the most recent wait was due to stream
s03 being full, so it sends the token for s03. Similarly, it sends the token for stream s06 to
stream s01 of the left branch. The indirect wait-for graph is shown in Figure 3.17(b), with
cycle (t3 s06 t6 s03) going through both streams.

Buffer size update algorithms

The cycle detection algorithm returns a set of edges in the wait-for graph that cause a
bottleneck cycle by becoming full. Relaxing the cycle involves increasing memory on one or
more of these edges. The purpose of the buffer size update algorithm is to determine which
edges to enlarge, and by how many buffers.

Our simplest algorithm is miserly, meaning that it starts at the minimum number of
buffers, mentioned in Section 3.3.1, and each iteration increases the allocation of a single
buffer by one. The other algorithms speculatively assign spare memory, and only take it away
if it is needed elsewhere. For all these algorithms, each stream s demands some number ds

of buffers, as for the miserly algorithm, and requests another rs to be granted out of unused
memory, if there is any. When there is not enough memory to grant all requests within
some memory, we used the following algorithm. The total request in bytes is R =

∑

rsbc(s),
where bc(s) is the size in bytes of a single consumer buffer for stream s. If M bytes are left
after granting all demands, so R > M , then each stream is initially granted ⌊rjM/R⌋ extra
buffers, then possibly one more, if it fits.

In our first alternative, double, each edge requests an extra buffer if it is currently allocated
only one. In our second alternative, exponential, the request is for some multiple, f − 1, of
the number of buffers demanded. It still uses a greedy update algorithm, so that when the
number of buffers is increased, the edge demands, on the next iteration, one more buffer
than it was given in total last time. The results use f = 2, so an edge will demand 2k − 1
buffers, and request an equal number, for k = 1, 2, · · · , until it is given fewer buffers than it
wants.

63

CompileTime/QueueSizes/bichainmem.eps
CompileTime/QueueSizes/token-bichainmem.eps

3. COMPILE-TIME DECISIONS

The third alternative, level, uses the top level, the length of the longest path from a source
node, and bottom level, the length of the longest path to a sink node. The algorithm the
same as exponential, except that the request is the maximum of a) f −1 times the number of
buffers demanded, b) twice the difference in top level, and c) twice the difference in bottom
level. This tries to give a high initial allocation to streams that cross a high latency.

3.3.3 Evaluation

This section uses the StreamIt 2.1.1 benchmarks [GTA06], random graphs, and sixteen ex-
amples, including chain8, producer-consumer, bad-baseline, and bichain4. For the StreamIt
benchmarks, the program graph, work estimates and communications rates were generated
by the StreamIt compiler. The algorithm in Section 3.2 was used to produce partitions for
an IBM QS20 blade, which has two Cell BEs.

Buffer size update The first three rows of Figure 3.18 compare the buffer update al-
gorithms from Section 3.3.2. These plots also contain results for Basten and Hoogerbrugge
(B&H) [BH01] and modified StreamRoller [KM08], which will be discussed in Section 3.4.
The left column shows as a function of the iteration number, the utilisation, which is propor-
tional to throughput, as remarked at the end of Section 3.1.3. The right column shows the
tradeoff between latency and utilisation. Any points that cannot be Pareto optimal, because
they are beaten on both utilisation and latency by some other point to the top-left, have
been removed.

The first row is for random stochastic graphs with 32 tasks and 50 streams. The graphs
are connected and acyclic, but otherwise unstructured. The computation time of each task
is normally distributed with a random mean and variance (clamped above zero). Notice that
B&H has poor performance and, since it increases buffering where it isn’t necessary, high
latency.

The upper bound on utilisation was found using an exhaustive search over all allocations
of the buffers on the processor, p, whose memory bound caused the level algorithm to termi-
nate. All other queues on other processors were set to their maximum possible size, assuming
that all other queues in the same memory had their minimum size. Since this tends to allow
a task near the beginning of the stream graph to work flat out filling downstream buffers,
the steady state utilisation would be known only after many firings. Instead, we took the
utilisation of the task on p, and scaled by the ratio of the long-term processing times of the
most heavily loaded processor and of p.

The second row shows the StreamIt 2.1.1 benchmarks, with an unroll factor of 100.
The third row shows the stochastic StreamIt benchmarks, which have normally-distributed
computation times, and are intended to show how the algorithms fare for realistic program
graphs.

The left column shows that the level algorithm always provides the fastest convergence.
The modified StreamRoller algorithm is similar to the first iteration of the level algorithm,
and B&H is considerably worse. The level heuristic initial allocation is within 15% of the
upper bound on optimal performance, and is increased to within 3% of optimal after four
iterations.

Cycle detection This section evaluates the cycle detection algorithms only, using greedy
buffer update without memory constraints. When task execution times and communications
rates are constant, and bus contention is negligible, the critical cycle algorithm of Sec-

64

3.4 Related work

tion 3.3.2 is optimal. The last row of Figure 3.18 shows the utilisation and latency for an
average of six random graphs with stochastic computation times. The poor performance of
the critical cycle algorithm (about 60% utilisation), is because it is unable to detect cycles
that arise from execution time variability. The baseline and token algorithms achieve similar
performance, although the token algorithm achieves slightly lower latency.

We also evaluated the cycle detection algorithms when there is high bus utilisation.
The critical cycle algorithm cannot model increased communication latency due to con-
tention [HP07, §E.5]. For a benchmark with a single producer task connected to two con-
sumers, and bus usage close to 100%, the critical cycle algorithm achieves about 70% utili-
sation. The baseline and token algorithms measure waiting times directly, and consistently
achieve 100% utilisation.

3.4 Related work

Partitioning There has been a great deal of work in automatically mapping stream pro-
grams onto multiprocessor systems. The Ptolemy II software environment [EJL+03] is an
actor-based model for real-time embedded systems that supports several models of compu-
tation, including Synchronous Dataflow (SDF) and Kahn Process Networks (KPN). Related
work from the Ptolemy project explores the more theoretical aspects of partitioning and
scheduling data flow graphs for multiprocessors [HL91].

The Stream Graph Modulo Scheduling (SGMS) algorithm is part of StreamRoller [KM08],
a StreamIt compiler for the Cell Architecture. This algorithm splits stateless kernels, parti-
tions the graph, and statically schedules. The splitting and partitioning problem is translated
into an Integer Linear Programming (ILP) problem, which is solved using CPLEX [ILO].
This approach uses mature technology to solve the ILP problem; it also applies kernel split-
ting in the same step, rather than using the iterative approach we follow.

Their partitioning algorithm considers only CPU loads, and ignores communications
bandwidth. This may be sufficient for a single Cell processor, which has a high-bandwidth
on-chip bus, but it is inappropriate when communication is off-chip, as in the Cell QS20
target, or when a bottleneck may appear in part of an on-chip network, such as a large
mesh.

The StreamRoller ILP formulation does not attempt to find a partition that minimises
the memory, latency and startup overheads introduced by software pipelining. Since it uses
an ILP solver to find a (close to) optimal solution to a problem with similar objective and
constraints to our unrestricted partition, the resulting pipeline length should be similar.
StreamRoller does not have any concept similar to our connectivity constraint. We believe
that when the program is written using an unrestricted programming language, the partition-
ing algorithm requires some mechanism to model which kernels can be statically scheduled
by the compiler. They do not restrict the memory footprint on each processor, although it
appears that their ILP formulation could be extended to do so.

Flextream [HCK+09] uses a related algorithm, adaptive stream graph modulo scheduling
to map a stream program to the Cell Architecture. It is a hybrid static-dynamic approach
which is able to adapt to changes in resource availability. The static work partitioning
algorithm uses ILP to map the program to the most powerful target; e.g. the full machine.
The dynamic partition refinement stage is a heuristic that adapts the partition at run time

65

3. COMPILE-TIME DECISIONS

Utilisation vs iteration number Utilisation-latency tradeoff

Buffer size update

Stochastic
random

G(32, 50)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration number

U
til

is
at

io
n

upper bound (see text)

level
exponential
double
miserly
B&H
streamroller

0.4 0.5 0.6 0.7 0.8

0.
5

0.
6

0.
7

Latency

U
til

is
at

io
n

upper bound level
exponential
double
miserly
B&H
streamroller

StreamIt
on 2-Cell

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration number

U
til

is
at

io
n

level
exponential
double
miserly
B&H
streamroller

0.50 0.55 0.60 0.65

0.
90

0.
94

0.
98

Latency

U
til

is
at

io
n

level
exponential
double
miserly
B&H
streamroller

Stochastic
StreamIt

on 2-Cell

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration number

U
til

is
at

io
n

upper bound (see text)

level
exponential
double
miserly
B&H
streamroller

0.45 0.50 0.55 0.60 0.65 0.70

0.
7

0.
8

0.
9

1.
0

Latency

U
til

is
at

io
n

upper bound

level
exponential
double
miserly
B&H
streamroller

Cycle detection

Stochastic
G(8, 12)

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration number

U
til

is
at

io
n

token
baseline
crit. cycle

0.6 0.7 0.8 0.9

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Latency

U
til

is
at

io
n

token
baseline
crit. cycle

Figure 3.18: Comparison of the buffer size update and cycle detection algorithms

66

CompileTime/QueueSizes/updates-32-50-n100.eps
CompileTime/QueueSizes/latperf-32-50-n100.eps
CompileTime/QueueSizes/updates-streamit.eps
CompileTime/QueueSizes/latperf-streamit.eps
CompileTime/QueueSizes/updates-streamit-s.eps
CompileTime/QueueSizes/latperf-streamit-s.eps
CompileTime/QueueSizes/cycle-8-12-n100.eps
CompileTime/QueueSizes/latperf-8-12-n100.eps

3.4 Related work

to take account of the resources that are actually available; e.g. if another application is
running.

The StreamIt compiler [GMA+02; GTA06] targets the Raw Microprocessor [WTS+97],
symmetric multicore architectures, and clusters of workstations. This is a long running
project with a publicly available compiler and benchmark suite. The StreamIt source lan-
guage imposes a structure on the stream program graph, where each kernel has a single
input and a single output, and kernels are composed in pipelines, split-joins, and feedback
loops. Since the kernels have static data rates, the compiler can fuse any set of kernels. The
default partitioner uses dynamic programming. Our model of the source program is more
general, since we target unstructured program graphs with variable data rates, and we use
the connectedness constraint to reason about the capabilities of the compiler. Our model of
the target system is also more general, since we can target a heterogeneous multiprocessor
system with any communications topology.

Liao et al. [LDWL06] use affine partitioning to map regular multidimensional programs
written using the Brook language [Buc03] onto a four-processor SMP. The R-Stream compiler
(www.reservoir.com/r-stream.php) is a proprietary high level compiler for stream programs,
which uses a polyhedral model to partition code and data to a parametric parallel machine.
Gedae [LBS] is a proprietary GUI tool for mapping data flow graphs to a heterogeneous
multiprocessor system. The transformations are under user control, and the partition is not
automatically found by the compiler.

Decoupled Software Pipelining (DSWP) [RVVA04] is a technique to tolerate variable
latency instructions in loops. It breaks a loop into strongly connected components, which
execute on different threads. The threads communicate using a synchronization array, a
hardware structure that provides low overhead blocking queues between threads. DSWP
can also exploit fine-grained parallelism, by mapping the strongly connected components to
different cores.

Queue sizes Basten and Hoogerbrugge (B&H) [BH01] is the only other work that also
targets unstructured graphs with variable multiplicities and computation times. Their algo-
rithm sets each FIFO buffer size to be proportional to the amount of data streaming through
it. This gives a relative size for each buffer, but it is not motivated by the underlying prob-
lems discussed in Section 3.1.3, and has poor performance in Figure 3.18. We interpreted
B&H to mean double buffering on the producer side, with all the remaining memory allo-
cated to consumer buffers, rounding the number of buffers up to an integer. If rounding up
causes the buffer allocation to not fit, we reduced the target memory use until it did fit. The
chain8 example in Figure 3.5 shows the problem with this heuristic. If all data rates are the
same and there is enough memory on tn for ten buffers, Basten and Hoogerbrugge allocates
five buffers to each stream for 70% utilisation, while our heuristic allocates eight to (t1, tn)
and two to (tn−1, tn) for 100% utilisation.

The SDF tool [SGB06] uses an exhaustive search to find all Pareto-optimal buffer allo-
cations for an SDF graph. It requires exponentially many steps, and only supports constant
computation times and data rates. For an n-way split or join where each stream needs b
buffers, their algorithm requires nb steps, while our level algorithm requires O(n log2 b) steps
to find a single solution.

StreamRoller [KM08] performs buffer allocation as part of software pipelining, but it is
restricted to graphs with fixed multiplicities and computation times. The algorithm is similar

67

3. COMPILE-TIME DECISIONS

to the first iteration of the level algorithm, in that the number of buffers allocated to a stream
is always one plus the difference in pipeline stage. The chain8 example in Section 3.1.3 shows
that this is conservative, even when there is no variability. Hence the StreamRoller algorithm
can require more memory than necessary; if there is insufficient memory, it fails.

Due to the unrolling factor we used, StreamRoller failed on at least one benchmark for
all of the graphs in Figure 3.18. This is true even for the StreamIt benchmarks, for which
our algorithm achieves 100% utilisation on at least one processor. We modified StreamRoller
to use our arbitration scheme described in Subsection 3.3.2, and obtained the results shown
in Figure 3.18. Even with this modification, however, our iterative algorithm has about 13%
higher performance for the stochastic random graphs and stochastic StreamIt benchmarks.

The SPIR compiler [CLC+09] extends StreamRoller to find a partition and software
pipeline subject to memory and latency constraints. Unlike our approach, computation
times and communication rates are constant. As for StreamRoller, the number of buffers
allocated to a stream is one plus the difference in pipeline stage. Since the problem cannot be
solved exactly using ILP, it is a heuristic which uses two passes of the commercial CPLEX
ILP solver. Our algorithm could be used to improve the buffer allocation of a partition
produced by SPIR.

3.5 Conclusions

This chapter introduced a new partitioning heuristic for stream programs. Unlike previous
work, it takes account of the partition’s effect on software pipelining and buffer allocation.
The algorithm controls the length of the pipeline using the convexity constraint. Unlike
previous work, it has a flexible mechanism to take account of the compiler’s ability to fuse
kernels.

This chapter also introduced a queue sizing algorithm, which allocates the memory in
local stores to streams. Unlike several previous algorithms, it supports streaming programs
with non-constant multiplicities and variable computation times. It also achieves higher
performance and lower latency than previous algorithms.

68

Chapter 4

Run-time Decisions

The previous chapter introduced two new algorithms for the stream compiler. The stream
compiler transforms the source code into an executable, performing optimisations using the
information known before the program starts running. This chapter focuses instead on the
decisions taken at run time. In particular, this chapter is concerned with dynamic scheduling
of stream programs.

A program can be scheduled either statically, by the compiler, or dynamically, by the run-
time system. Chapter 3 was concerned with static scheduling. If the program is scheduled
statically, each task becomes a thread containing a loop, each iteration of which executes its
kernels’ work functions in sequence. Tasks communicate using communications primitives,
which they call as and when they need them. This implies a relatively simple run-time
system, similar to acolib. The main advantages of static scheduling are low overhead and
low memory use.

If the program is scheduled dynamically, each task is broken up into self-contained, non-
blocking tasks. The dynamic scheduler decides in which order to run these tasks, constrained
by dependencies between them: a task cannot start if it needs an output from a task that
hasn’t yet finished. Tasks consume input when they start and produce output when they
complete, rather than communicating as required using communications primitives.

Dynamic scheduling is the only choice when the program’s behaviour is unpredictable.
It also supports stream graphs that are not known at compile time, because kernels and
streams are introduced dynamically. As illustrated in Figure 4.1, a dynamic scheduler adds
overhead, but it can be better overall when the partitioned stream program is unbalanced.
The discussion in Section 4.2.2 gives an example.

A dynamically scheduled program still benefits from unrolling and partitioning transfor-
mations, since they coarsen the granularity, and bigger tasks have smaller total overhead.
In addition, unrolling enables vectorisation, and task fusion enables data reuse and poly-
hedral transformations. A partitioning transformation for a dynamic scheduler, unlike the
algorithm in Chapter 3, does not need to map tasks to processors.

Section 4.1 defines the dynamic scheduling problem. Section 4.2 describes the previously
known scheduling algorithms, and gives a worst case example for each. Section 4.3 develops
an adaptive scheduler for stream-like applications. There are two variants of this scheduler,
the apriority stream scheduler requires a one-dimensional stream program, and it needs

69

4. RUN-TIME DECISIONS

Balanced program Unbalanced program

Static
schedule

Proc 1

Proc 2

Proc 3

0us 100.0us 200.0us 300.0us 400.0us 500.0us 600.0us

Proc 1

Proc 2

Proc 3

0us 100.0us 200.0us 300.0us 400.0us 500.0us 600.0us

Dynamic
schedule

Proc 1

Proc 2

Proc 3

0us 100.0us 200.0us 300.0us 400.0us 500.0us 600.0us

Proc 1

Proc 2

Proc 3

0us 100.0us 200.0us 300.0us 400.0us 500.0us 600.0us

⇒ static schedule is shorter ⇒ dynamic schedule is shorter

Figure 4.1: Example traces with static and dynamic scheduling (black is scheduling overhead
and shades distinguish kernels)

annotations from the compiler. The gpriority general-purpose scheduler is more general,
and it does not need any additional information. Section 4.4 is the experimental evaluation.

4.1 The dynamic scheduling problem

4.1.1 Interface to the dynamic scheduler

The stream program starts executing on one processor, in a sequential master thread. When-
ever the master thread reaches a function marked as a task, the function does not execute
right away. Instead, an instance of that task is created, and added to the partially-generated
dependency graph (PDG). The PDG holds tasks until they have finished executing. Each
vertex is a task, and each directed edge represents a dependency between tasks. When the
predecessors of a task, if any, have all finished, the task becomes ready. Ready tasks are held
in a data structure known as the ready queue, until they are issued, in an order determined
by the dynamic scheduler. Figure 4.2 illustrates this process, showing the dynamic scheduler
in context.

The dynamic scheduler supports the three operations labelled in Figure 4.2:

void create-task(Task task-id, Task-set preds)
Task issue-task(Worker worker)
void complete-task(Task task-id)

The create-task operation adds a task to the partial dependency graph (PDG). Its ar-
guments identify the task, and the set of tasks whose outputs it consumes. The issue-task
operation is called by a worker when it is idle; it waits for and returns the next ready task to
issue. The complete-task operation is called by a worker when it finishes executing its task; it

70

RunTime/static-one.eps
RunTime/static-two.eps
RunTime/dynamic-one.eps
RunTime/dynamic-two.eps

4.1 The dynamic scheduling problem

Sequential
thread(s)

Partially-generated
dependency

graph (PDG)

Ready
queue

Worker 1

Worker 2

Worker 3

...

Workers

Scheduler

create-task

complete-task

issue-task

Figure 4.2: Dynamic scheduler in context

notifies the scheduler that the outputs from that task are now ready. A complete scheduler
would provide some additional operations, to support initialisation, barriers, and so on, but
they are not relevant here. This interface is similar to the interface between Nanos++ [Nana]
and its scheduler plugin.

This construction has some direct implications. First, tasks are non-preemptive, so
once issued, they run to completion. Second, the scheduler is non-clairvoyant, meaning
that task execution times are not known until they complete. Third, the dependency graph
is built by a sequential thread, and is not known all at once.

4.1.2 Throttle policy

Another aspect of scheduling is the throttle policy. The program may create a large number
of tasks in the course of its execution, so the main thread should be stalled if the PDG
contains too many tasks. On Nanos++, this is done by inlining the next task, effectively
making the rest of the master thread a new task dependent on the newly created one. This is
a reasonable way to prune a recursive computation such as quicksort, which would otherwise
create a large number of very small tasks. On CellSs, the main program on the PPE simply
stalls, and the processor does not become an extra worker, since all the workers are SPEs.

The decision to stall task creation is taken by the throttle policy. In Nanos++, the
default throttle policy is based on the number of ready tasks per processor, inlining tasks if
the number of ready tasks is greater than some threshold.

For one-dimensional stream programs, the number of ready tasks is usually confined to
a relatively narrow region, as shown in the histograms in Figure 4.3. These histograms show
the distribution of the number of ready tasks, sampled at a constant rate. If the threshold
is greater than ten, it is never exceeded, and the size of the PDG will grow without limit.
If it is less than ten, the main thread will stall too frequently. A better throttle policy is
one based on the number of tasks in the PDG. The main thread should be stalled when the
PDG contains a certain number of iterations’ worth of tasks.

71

RunTime/Adaptive/scheduler.eps

4. RUN-TIME DECISIONS

0 2 4 6 8 10

Number of ready tasks

F
re

qu
en

cy

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0 2 4 6 8 10

Number of ready tasks

F
re

qu
en

cy

0.
00

0.
02

0.
04

0.
06

0.
08

0 2 4 6 8 10

Number of ready tasks

F
re

qu
en

cy

0.
00

0.
05

0.
10

0.
15

0.
20

(a) 1 processor (b) 6 processors (c) 16 processors

Figure 4.3: Number of ready tasks, excluding those running: channelvocoder, using oldest-
first

4.1.3 Objective function: comparing schedulers

The precise goal of the scheduler depends on the context. An offline stream program, such
as video transcoding or a database query, should be finished as soon as possible. In standard
terminology, the scheduler’s objective would be to minimise the makespan, written Cmax,
the time that the last task finishes.

Other stream programs, such as video playback, operate in real time. This suggests that
an additional goal should be to minimise latency, so that an output frame isn’t delayed by
the processing of too many tasks from future frames.

An additional constraint on the scheduler is memory footprint. If the memory footprint
is too large, either performance will suffer through paging to disk, or the program will fail
due to insufficient memory.

4.2 Survey of DAG scheduling techniques

The scheduling problem is NP-hard, because it includes a well-known NP-hard problem as
a special case. This corresponds to the case where the dependency graph is known up-front,
a problem known as p | prec |Cmax [LK78; Ull75].1 The scheduler therefore has to use a
heuristic, which tries to find a good solution that might not be optimal. Many heuristics
have been proposed, for various related scheduling problems, and a selection is given in
Table 4.1. Many of these heuristics are unsuitable because they require the task execution
times, they need to schedule the whole program in advance, or they are too slow.

This section investigates the performance of the scheduling algorithms listed in Table 4.2.
These policies are non-preemptive, non-clairvoyant, online, and fast. The next subsection

1That is, p processors, with precedence relations, and objective to minimise the maximum completion
time.

72

RunTime/Adaptive/throttle-readytasks-1.eps
RunTime/Adaptive/throttle-readytasks-6.eps
RunTime/Adaptive/throttle-readytasks-16.eps

4.2 Survey of DAG scheduling techniques

Abbrev. Full name Year Online? Hetero-
geneous?

Clair-
voyant

Note

HLFNET [ACD74] Highest Levels First with No Estimated
Finish Times

1974 Offline Homo No Same as botlev

SCFNET [ACD74] Smallest Co-levels First with No Esti-
mated Finish Times

1974 Online Homo No Same as toplev

DSH [KL88] Duplication Scheduling Heuristic 1988 Offline Homo Yes O(n4) is too slow

ETF [HCAL89] Earliest Task First 1989 Online Homo No Schedules task that
would start first

MCP [WG90] Modified Critical Path 1990 Offline Homo Yes Like botlev, but takes
account of descendants’
bottom levels

MH [ERL90] Mapping Heuristic 1990 Offline Hetero Yes O(n2p3) is too slow

GDL [SL93] Generalised Dynamic Level 1993 Offline Hetero Yes
DSC [YG94] Dominant Sequence Clustering 1994 Offline Homo Yes
BIL [OH96] Best Imaginary Level 1996 Offline Hetero Yes

HEFT [THW99] Heterogeneous Earliest Finish Time 1999 Offline Hetero Yes
MCT [MAS+02] Minimum Completion Time 1999 Online Hetero Yes
MET [MAS+02] Minimum Execution Time 1999 Online Hetero Yes

PCT [MAS+02] Partial Completion Time 1999 Online Hetero Yes
OLB [MAS+02] Opportunistic Load Balancing 1999 Online Hetero Yes
CPOP [THW99] Critical Path on a Processor 1999 Offline Hetero Yes

k-DLA [WY02] k-Depth Lookahead 2002 Offline Hetero Yes
HCPT [HJ03] Heterogeneous Critical Parent Trees 2003 Offline Hetero Yes

Table 4.1: Known DAG scheduling heuristics, related to the problem in this chapter

Top level Bottom level Criticality #Children #Descendants

A 0 3 3 3 4

B 1 2 3 1 2

C 1 1 2 1 1

D 2 1 3 1 1

E 3 0 3 0 0

Figure 4.4: Metrics used by the scheduling policies

describes the policies in detail. Subsection 4.2.2 gives a simple realistic worst-case example
for each policy. Subsection 4.4 is an empirical analysis on a 16-core machine.

4.2.1 The online scheduling policies

Table 4.2 lists the scheduling policies investigated in this section. All policies work by issuing
a ready task with the highest priority, where the priorities may be adjusted dynamically, and
they differ, of course, between the policies. It is possible to construct examples that cannot
be scheduled optimally by any priority-based scheduler [Koh75], since the optimal schedule
may require unforced idle time: a processor waiting idle for some time, even though there
are some ready tasks. Section 4.2.2 gives an example stream program, observed in practice,
which has poor performance for this reason, when using the oldest-first scheduler.

The fifo (first in–first out) policy schedules the task that became ready first. Conversely,
the lifo (last in–last out) policy schedules the one that became ready last. For recursively
generated computations, such as quicksort, fifo tends to open up parallelism, because it

73

RunTime/Adaptive/example-orders.eps

4. RUN-TIME DECISIONS

Policy Description
Priority
known
when

Priority at
ready time

Ready queue
Ties
possible

Per-task
complexity

fifo FIFO (ready-first) ready known circular buffer yes O(1)
lifo LIFO (ready-last) ready known stack yes O(1)

oldest Earliest created task first created known priority queue no O(log R)

toplev Minimum top level (depth) created known priority queue yes O(log R)

botlev Maximum bottom level issued lower bound priority queue + map yes O(W)

crit Maximum top+bottom level issued lower bound priority queue + map yes O(W)

mchild Maximum number of children issued lower bound priority queue + map yes O(log R)

mdesc Maximum num. descendants issued lower bound priority queue + map yes O(W)

wave Stream program wavefront created known priority queue yes O(log R)

apriority From Section 4.3 ready known priority queue yes O(log R)

gpriority From Section 4.3 ready known priority queue yes O(log R)

Table 4.2: The scheduling policies and cost, where W is the number of tasks in the PDG,
and R is the number of ready tasks

schedules larger tasks near the top of the call tree first, doing the computation in breadth-
first order. In contrast, lifo has lower memory use and better data locality, and would often
be the best schedule for a single processor. The Cilk scheduler [BJK+95] uses LIFO for local
queues and FIFO for work stealing.

The oldest policy schedules the task that was created first. This policy is similar to FIFO
when all tasks are independent.

The remaining policies use the metrics illustrated in Figure 4.4. The toplev policy
schedules a task with the minimum top level; the top level is the number of edges in a
longest path from a source vertex to the task. Similarly, the botlev policy schedules a task
with the maximum bottom level, which is the number of edges in a longest path from the
task to a sink vertex. The toplev and botlev policies are also called SCFNET and HLFNET,
respectively [ACD74]. The botlev policy was used for task scheduling in 1969 [Bow69], and
later, when taking account of known computation times, it was known as HLFET and the
Critical Path Method.

There is an important difference between the top and bottom levels. The top level is
easily calculated in task creation, and is then known for certain, but the bottom level must
be calculated bottom up. Adding a task to the PDG may change the bottom level of every
other task. The average case will normally be less expensive, since the traversal can terminate
whenever it reaches a task whose bottom level is not changed. The bottom levels may be
updated in this way, either every time a task is created, or periodically.

The crit policy schedules a task with the maximum criticality, which is the sum of
the top and bottom levels. The crit policy is equivalent to choosing a task with the least
slack (sometimes called the mobility). The mchild policy schedules a task with the greatest
number of successors. The aim is to try to open up parallelism, but the policy is short-sighted
because it is local, and it is not adaptive, because it keeps opening up parallelism even if
there is plenty enough already. The mdesc policy schedules a task with the greatest number
of descendants. It is expensive and has poor performance.

The wave scheduler is specific to one dimensional stream programs. It schedules a kernel
with lowest wave number, where the wave number of a kernel is equal to the iteration number

74

4.2 Survey of DAG scheduling techniques

circular buffer
O(1)

stack
O(1)

priority queue
O(log R)

priority queue + map
O(W + R)

Figure 4.5: Lattice of ready queues for a heuristic

plus the kernel’s top level within the iteration. It is equal to the top level when all kernels
have multiplicity one.

The apriority and gpriority policies are the adaptive schedulers that will be introduced
in Section 4.3. The results are presented in this section so they can be more easily compared
with the existing schedulers.

All policies except oldest-first may give several tasks the same priority. Often the tie will
be broken in some arbitrary way, but this could be done using a second scheduling policy.
Continuing like this, a heuristic is a list of policies; e.g. (fifo, oldest) is a FIFO scheduler,
but if several tasks became ready at the same time, they are scheduled in increasing order
of their creation time.

Scheduler complexity

Table 4.2 summarises the overall amortised per task time complexity of the policies. The
complexity takes account of the cost of assigning priorities, updating priorities when other
tasks are created, and pushing and popping tasks to the ready “queue”.

The table shows the ready “queue” data structure required by each policy. The fifo
policy, on its own, simply uses a circular buffer for the ready queue. There is no need to
explicitly track priorities, because the priority of a task is known when it becomes ready,
and is implied by its position in the circular buffer. Similarly, lifo uses a stack. For fifo and
lifo, insertion and removal are both constant time: O(1).

The oldest, toplev and wave policies use a priority queue, because the task’s priority is
known at creation time, and therefore known at ready time, when the task is inserted into the
queue. Similarly for apriority and gpriority. Both insertion and removal have cost O(log r),
using a heap or self-balancing binary tree, where r is the current size of the ready queue.
The average value of log r is written log R. In both cases, calculating the priority itself is
constant time: O(1), so overall the cost per task is log R.

For the remaining policies, task priorities are not known until issue time, but a lower
bound is known at ready time. For example, the mchild policy schedules the task with the
greatest number of children. When a task becomes ready, some of its children may already
have been created, but not always all of them. Each time another task is created, all of its
parents require their priority to be increased by one. The number of ready parents is at most
the number of function arguments, so the extra number of updates per task is O(1).

These policies can be implemented using a priority queue, since priority queues typically
provide an operation that increases an element’s priority. It also requires a map from the
task ID to its position in the priority queue; e.g. the node in a tree, and this map must be
updated as the priority queue is manipulated. Task removal has cost O(log r), as before, but

75

RunTime/Adaptive/heuristic-ready-queue.eps

4. RUN-TIME DECISIONS

Heuristic
Throughput (compared with optimal)

Exhaustion Back pressure

Optimal static, without fission 1
p n/a

Optimal static, with fission p+1
2p

n/a

(oldest)
p

2p−1

3p−4
2p−2

(fifo, *)
p

2p−1
2p

3p−1

(lifo, *) n/a
p

2p−1

(toplev, *)
p

2p−1

p
2p−1−f∗

(botlev, *)
p

2p−1
p

2p−1−f∗

(crit, *)
p

2p−1
p

2p−1

(mchild, *)
p

2p−1

p
2p−1

(mdesc, *)
p

2p−1
p

2p−1−f†

(wave, *) n/a n/a

Table 4.3: Throughput for one dimensional stream programs, compared with optimal, where
p is the number of processors, f is the unroll factor, f∗ = p−1

f , f † = p−1
f+1

task creation requires some of the priorities of the tasks in the ready queue to be updated.
Using a balanced tree or heap, updating the priority of a single task in the ready queue is
O(log r); using a Fibonacci heap, it is O(1) amortised time [FT87a].

For botlev, crit, and mdesc, adding a single task may change the priority of every other
task in the PDG. There are simple, common, examples, for each of the three policies, that
exhibit this worse case.

A heuristic is a list of policies, and the ready queue for a heuristic is the most general of
the ready queues of its policies; i.e. the one that is furthest to the right of Figure 4.5.

4.2.2 Theoretical evaluation

This section exhibits simple, realistic worst case examples for the scheduling heuristics. Many
of these examples occur in the results in Section 4.4. All the examples are one-dimensional
“streaming” programs, constructed by a single for loop containing calls to several kernels.
Each such call generates a task. The multiplicity, or number of tasks per kernel per iteration,
varies between kernels.

These streaming examples divide into two groups, which correspond to the two main
ways that the schedule can be bad. The first group suffers from exhaustion, meaning that
the scheduler frequently runs out of parallelism throughout the execution. This happens
when the scheduler tends to complete all the kernels from one loop iteration before starting
the next iteration. This is typical of oldest, and it is inappropriate when the next iteration
begins with a long kernel, on which all other kernels depend.

The second group suffers from poor back pressure, meaning that some kernels execute
the loop iterations at a faster rate than others. Poor back pressure implies poor temporal
data locality, which, if the amount of data transferred between kernels is large, will reduce

76

4.2 Survey of DAG scheduling techniques

Costs Dependency Graph Costs Dependency Graph

0 5 10 15 20 251

4 9 14 19 24 29
1
p

3 8 13 18 23 28
1
p

2 7 12 17 22 27
p−1

p

1 6 11 16 21 26
p−1

p
p− 1

p− 1

7
7

5
6

3
5

1

5
7

4
7

3
7

2
7

1
7

0
7

0

6

7

4

6

2

5

1
p

6

7

4

6

2

5

1
p

6

7

4

6

2

5
p−1

p

6

7

4

6

2

5
p−1

p
p− 1

p− 1

(a) oldest (b) botlev (inside nodes) and crit (outside)

Figure 4.6: Worst case examples for exhaustion, illustrated for p = 3 processors

performance significantly. If the amount of data transferred is small, when all iterations of
the faster kernels have been done, there may not be enough parallelism left to keep all of the
processors busy. Back pressure can be helped by reducing the window size, but it still uses
more memory than it should; exhaustion cannot.

Table 4.3 shows the worst case throughput, as a multiple of the optimal throughput.
These figures assume that the number of iterations are large, so they exclude the overhead at
the start and end of the program. All examples have an optimal schedule with all processors
100% busy during the steady state.

Many examples have worst case ratio close to p
2p−1 , so for large numbers of processors,

on average they use only half of the number of processors as the optimal schedule. Graham’s
bound [Gra71] shows that any demand scheduler; i.e. one using priorities or a list schedule,
has execution time at most 2p−1

p times optimal; so this bound is indeed the worst case.

These examples are synchronous dataflow (SDF) [LM87] streaming programs, so they
could also be scheduled statically, at compile time. Table 4.3 shows the worst case for
optimal static schedulers with and without support for kernel fission, which splits stateless
kernels (a kernel is stateless if there is no dependency path from one iteration of the kernel
to another).

If the static scheduler does not support fission, the worst case is when most of the work
is in a single stateless kernel, since the static scheduler allocates that kernel to one of the
processors, while any dynamic scheduler would run it on them all. With kernel fission, the
worst case is a pipeline of p + 1 stateful kernels. One processor must be assigned two of
them, giving utilisation p+1

2p , which approaches one half for large p.

Exhaustion

Figure 4.6(a) is an example where the oldest policy suffers from exhaustion. The iterations
of the loop run from left to the right. Each row is a kernel, all of whose tasks have the same
execution time, shown to the left of the diagram. The vertex labels, for this one diagram,
number the tasks in the order they were created. The other diagrams will highlight whichever
metric is used by the scheduler. The diagram is illustrated for p = 3 processors.

An optimal schedule allocates one processor to the top row, at cost 1 per iteration. The
remaining p − 1 processors are each allocated to one row of cost p−1

p and one row of cost
1
p , for a total cost per processor also equal to 1 per iteration. The schedule is a pipeline of
length two, and the loads are balanced, so steady state utilisation is 100%.

77

RunTime/Adaptive/bad-oldest.eps
RunTime/Adaptive/exh-botlev.eps

4. RUN-TIME DECISIONS

Costs Dependency Graph Costs Dependency Graph

2 3 4 5 6 7 81

1 2 3 4f p−1
p

0 1 2 3f p−1
p

p
7

10
6

8
5

7
4

5
3

4
2

2
1

1

p−1
p

8
17

7
14

6
12

5
9

4
7

3
4

2
2

p−1
p

3
3

2
2

1
1

0
0

f

p

(a) toplev (b) botlev (inside nodes) and mdesc (outside)

8 8 8 8 8 8 8
p−1

p

8 8 8 8 8 8 8
p−1

p

5 6 7 8f

p

2 2 2 2 2 2 2
p−1

p

2 2 2 2 2 2 2
p−1

p

1 1 1 1 1 1 11

p

(c) crit (d) mchild and lifo

1 4 7 10 13 16 191

0 3 6 9 12 15 18p− 2

2 5 8 11 14 17 201

(e) oldest

Figure 4.7: Worst case examples for back pressure, illustrated for p = 2 processors (p = 3
for subfigure (e)) and unroll factor f = 2

The oldest scheduler will first issue task 0 from the top row. Once that has completed,
all other tasks in the same iteration (1, 2, 3, and 4 in the picture) become ready. The next
task from the top row, 5, also becomes ready, but it will not be issued until the tasks from
the same iteration have been done. The kernel execution times have been chosen so that all
processors finish the first iteration at the same time. At this point, the first task, 5, in the
next iteration can start on one processor, but the remaining processors will be idle.1 Each
iteration requires time 1 for the task from the top row, plus time p−1

p for the remaining tasks;
hence the result in Table 4.3.

This example is a perfectly ordinary stream program, and several StreamIt benchmarks
suffer a similar fate. The fm benchmark illustrated in is a good example.

This example can be adapted for some of the other heuristics. It works as it stands for
(fifo, oldest) and (lifo, oldest), because in the above description, all tasks in the ready queue
became ready at the same time. To produce a general example for fifo and toplev, add a
zero-cost task between each consecutive pair of tasks in the top row; i.e. between tasks 0
and 5, and 5 and 10; and so on.

Figure 4.6(b) shows a similar example for botlev and crit. The labels inside the tasks
are the bottom level, and the labels outside are the criticality. The analysis is the same as
before, and this example also turns up in the empirical analysis. Similar examples exist for
mchild and mdesc. A possibility for the latter is to unroll all but the first kernel and make
the branches of the split stateful; this is one of many ways to ensure that the branches of
the split have more descendants than the next task in the top row.

1An example execution trace for this example is shown in Figure 4.9(b).

78

RunTime/Adaptive/bad-top-level.eps
RunTime/Adaptive/bad-mdesc-botlev.eps
RunTime/Adaptive/bad-criticality.eps
RunTime/Adaptive/bad-mchild.eps
RunTime/Adaptive/bp-oldest.eps

4.2 Survey of DAG scheduling techniques

Back pressure

Figure 4.7(a) is an example where toplev suffers from poor back pressure. Each task is
labelled with the top level. There are p + 1 kernels, the first p of them with multiplicity one,
and the last with multiplicity f . The diagram is illustrated for p = 2 processors, and f = 2.
The first p rows have tasks of cost f(p− 1)/p, after unrolling, and the final row has tasks of
cost 1.

An optimal dynamic schedule uses p−1 processors for the top p rows, and the remaining
processor for the bottom row. The bottom row has cost 1 per iteration of the original loop.
The tasks in the top p rows each have cost f(p − 1)/p, but they each cover f iterations of
the original loop. Hence the total cost for f iterations of the top p rows is f(p− 1), which is
also 1 per processor per original iteration. Ignoring the first few and last few iterations, the
load is balanced perfectly, and can be scheduled as a pipeline, so utilisation is 100%.

The toplev scheduler proceeds by top level, with 100% utilisation until the last task in
the top row has been completed. At that point, the top p rows are all close to complete, but
the bottom row is about 1/f complete. The rest of the bottom row will be serialised.

For n complete iterations of the original loop, the total busy CPU time, for either sched-
uler, is np. The toplev scheduler has idle time equal to

t = (p− 1)n

(

1−
1

f

)

,

since p− 1 processors wait for the completion of the bottom row.

The ratio of total time is therefore

np + t

np
=

p + (p− 1)(1 − 1
f)

p

=
2p − 1− f∗

p
, where f∗ =

p− 1

f
.

For large unroll factors, the relative utilisation is close to p
2p−1 , itself close to one half for

large numbers of processors.

Figure 4.7(b) is a similar example for botlev and mdesc. The labels inside the tasks
are the bottom level, and the labels outside are the number of descendants. The analysis is
similar to the previous case, leaving much of the bottom row to be processed sequentially
on one processor. For botlev, the bottom row will not be started until only 1

f of the top row
is left. At this point, the p + 1 rows will be processed together, until just the bottom row is
left. For mdesc, the bottom row will begin execution a little later, but the analysis is similar.

Figures 4.7(c) and (d) show worst-case examples for crit, and mchild and lifo. The
labels inside the tasks are the priorities, given by the criticality and number of children,
respectively. In both cases, none of the tasks from the bottom row will be issued until the
top row is finished. For crit, this is true whatever the unroll factor, because removing just one
task from the bottom row moves the bottom row off the critical path. For mchild, this is true
because the tasks in the bottom row have one child, whereas all the other tasks have two.

For lifo, the first or second task in the bottom row will be delayed until the end of the
execution, because it will always have been the first task put in the ready queue that has
still to be done.

79

4. RUN-TIME DECISIONS

Cost

p− 2 a

1 b

1 c

Proc. 1

Proc. 2

Proc. 3

c bk−1 ck−1 bk ck a

a bk+1 ck+1 b

a a

t

t + ∆t
t + 1
t + ∆t + 1

Time

(a) Stream graph (b) Stealing the next kernel b

Figure 4.8: Illustration for oldest back pressure

For fifo, the utilisation under exhaustion is slightly higher, at 2p
3p−1 . An example is a

stateful pipeline, similar to Figure 4.7(d), but with p(p− 1) kernels of cost 1, followed by a
single high-cost kernel of cost p+ǫ, for small ǫ. An optimal schedule has a perfectly balanced
pipeline, processing one iteration every p time units.

The fifo schedule, however, runs the high cost kernel at one half the rate of the other
kernels. The remaining iterations of this kernel will have to be processed on one processor.
This is because while a high-cost task is executing, a complete wave of other tasks can
complete: in time p on p− 1 remaining processors, p(p− 1) tasks are completed. When the
high-cost task has completed, there is a whole new wave of other tasks in the FIFO queue
ahead of it, so a second wave completes before the next high-cost task starts. The utilisation,
in Table 4.3, is like toplev with f = 2.

Surprisingly perhaps, the oldest scheduler can also suffer from poor back pressure. This
is possible, even though it always assigns highest priority to the oldest task. An example is
shown in Figure 4.7(e). This example is redrawn in Figure 4.8(a) as a stream graph, with
the kernels labeled a, b, and c.

The costs are chosen so that the optimal schedule should use, on average, one processor
for kernel b, one processor for c, and the rest of the processors for kernel a.

In fact, the oldest scheduler often uses one processor for both b and c, and p− 1 instead
of p−2 processors for the rest, causing the back pressure problem. Figure 4.8(b) shows why.
When processor 3 finishes a task, processor 1 is currently executing an iteration of kernel b,
and no iterations of either kernel b or c are ready. It therefore has to execute another iteration
of kernel a. When processor 2 finishes its task, processor 1 is currently executing kernel c,
and the next iteration of kernel b is ready. This allows processor 2 to begin executing this
kernel, opening up parallelism. However, when processor 1 finishes, the only ready tasks are
again those from kernel a. The overlap is therefore short-lived, and only in exceptional runs
are there are a significant amount of concurrency between kernels b and c.

80

RunTime/Adaptive/bp-oldest-stream.eps
RunTime/Adaptive/bp-oldest-trace.eps

4.3 Adaptive schedulers

4.3 Adaptive schedulers

This section describes two adaptive schedulers for stream-like programs. The first, adaptive
priority (apriority), is specific to one-dimensional stream programs. The second, general
adaptive priority (gpriority), has slightly more overhead but it is more general.

Both policies are low overhead, and are based on the oldest-first scheduler. As will be
seen in Section 4.4, oldest-first has the lowest memory use, and it usually has the best
performance, but it sometimes suffers from exhaustion. The adaptive schedulers modify the
oldest first scheduler so that if exhaustion occurs, the priorities are adjusted to try to stop
it happening again. If exhaustion never happens, both policies remain the same as oldest
throughout execution, retaining its low memory use.

The oldest scheduler issues the task with the smallest task number; that is, the priority is
zero minus the task number. Both the adaptive schedulers modify this priority by adding an
adjustment, which depends only on the kernel ID. The adjustments start at zero. Whenever
a kernel is seen to be a bottleneck, the adjustments of that kernel and its ancestors are
increased.

Both adaptive schedulers have complexity similar to that of oldest-first. They hold
the ready tasks in a priority queue, which has complexity per task equal to the average
value of the logarithm of the number of ready tasks. Ready tasks are inserted with known
priority. The schedulers maintain a small table of metrics, described later, which is updated
in constant time per task. The priority adjustments are updated infrequently, and the cost
is linear in the number of kernels. In addition, the gpriority scheduler has some overhead at
task creation time, which has a constant cost per dependency edge.

4.3.1 Intuition

Figure 4.9 shows the worst-case example for oldest-first, from Figure 4.6(a), redrawn as a
stream graph, with the kernels given labels a, b1, and so on. An execution trace is shown
in Figure 4.9(b). For comparison, an optimal execution trace is shown in Figure 4.9(c). As
described in Section 4.2.2, this example suffers from exhaustion: processor utilisation is poor
because the oldest-first scheduler finishes the tasks from one iteration before starting the
next. The next iteration starts with a single expensive kernel a, and all other processors
have to wait for it to finish.

The problem is apparent in the trace—only one processor is busy just before kernel a
finishes. To avoid this problem, each firing of kernel a should have started executing earlier.
In contrast, every time kernel b1 finishes executing, roughly half of the processors are busy.
The precise number depends on the order in which b1 through b4 and c4 finish, and on the
latency in the run-time system between the time a task finishes and the thread is marked
idle. Figure 4.10 is an example set of statistics after three iterations. It gives, for each kernel,
the number of times that kernel has been done and the average number of threads that were
busy just before it finished.

The average number of busy threads for kernel a is low, so a is probably the bottleneck.
The problem can be alleviated or fixed by increasing kernel a’s priority. The following
sections extend this idea into a working scheduler.

81

4. RUN-TIME DECISIONS

Cost

1

p−1
p

1
p

a

b1 bp−1 c1 cp−1· · · · · ·

(b) Stream graph for example in Figure 4.6(a) for five processors

Proc. 0

Proc. 1

Proc. 2

Proc. 3

Proc. 4

a b1

b2

b3

b4

c1 c2 c3 c4

a

b1

b2

b3

b4

c1 c2 c3 c4

a

b1

b2

b3

b4

c1 c2 c3 c4

(b) Example execution trace for five processors (shading distinguishes iterations)

Proc. 0

Proc. 1

Proc. 2

Proc. 3

Proc. 4

a a

b1

b2

b3

b4

c1

c2

c3

c4

a

b1

b2

b3

b4

c1

c2

c3

c4

b1

b2

b3

b4

c1

c2

c3

c4

(c) Optimal execution trace for five processors (shading distinguishes iterations)

Figure 4.9: Motivation for busyness statistic

82

RunTime/Adaptive/badoldest-stream.eps
RunTime/Adaptive/badoldest-trace.eps
RunTime/Adaptive/badoldest-trace-good.eps

4.3 Adaptive schedulers

Kernel Times
completed

Average busy
threads

a 3 1.0 ←

b1 3 2.3
b2 3 4.3
b3 3 4.3
b4 3 3.7
c1 3 5.0
c2 3 5.0
c3 3 5.0
c4 3 3.0

Figure 4.10: Example statistics after three iterations of the program in Figure 4.9

Name Notation
Initial
value

Description

For every thread

State Sj not started State: not started, busy, or idle

For every kernel

Adjustment ak 0 Priority adjustment for this kernel
Sum busy threads tk 0 Used to calculate average busy threads
Starved count sk 0 Number of times kernel was starved
Non-starved count ck 0 Number of times kernel has completed without

being starved

Table 4.4: Statistics for adaptive schedulers

4.3.2 Monitoring

Updating statistics

Table 4.4 lists the small set of statistics that are maintained by the apriority and gpriority
schedulers. Each worker thread starts in state not started, in which it remains, until the
scheduler issues the first task to run on it. In order to avoid discriminating against kernels
near the top of the stream graph during the first few iterations, processors are also considered
busy if they have not executed any tasks yet. The scheduler keeps track of the number of
busy threads, which is the number of threads in the not started or busy state.

Every time a task completes, the adaptive scheduler needs to update the corresponding
kernel’s statistics. This must be done before any successors of the task can become ready. If
the next task for the same kernel has not yet been created, the kernel is said to be starved, and
the master thread could be the bottleneck. If this happens too often, there would probably
be little point in increasing that kernel’s priority anyway. If the kernel is starved and there
is at least one idle thread, the starved count for this kernel is increased. Otherwise, the
kernel’s non-starved count is increased by one, and the sum of busy threads is increased by
the current number of busy threads.

83

4. RUN-TIME DECISIONS

4.3.3 Updating priorities for apriority

Update algorithm

The update algorithm for apriority is called every so often to modify the priority adjustments.
It happens on a worker thread at the end of complete-task. More details on the update
interval are given below.

The update algorithm works as follows. First, if more than 10% of tasks were starved;
that is, if

∑

k sk ≥
1
10

∑

k ck, the main thread is probably the bottleneck, and there is little
the adaptive scheduler can do, except try to minimise overhead. In this case, the priority
adjustments are left unchanged, and the interval to the next time the update algorithm is
called is increased. The experiments in Section 4.4 simply use an interval of 100ms for the
normal case and 500ms if more than 10% of tasks were starved. This behaviour could be
made more sophisticated.

If fewer than 10% of tasks were starved, a candidate kernel is identified. The candidate
has the lowest average number of busy threads. In case of ties, it is the kernel with the
largest ID, which is the one nearest the bottom of the stream graph. The average number of
busy threads for the candidate is compared with the average for all kernels. If it is less than
90% of the average for all kernels, then the candidate is treated as a the bottleneck kernel;
otherwise, there is no clear bottleneck kernel.

The priority of the bottleneck kernel is increased by the number of kernels per iteration.
In order to avoid priority inversion, if any of the candidate’s predecessors now have a lower
priority than it, their priorities are increased to be the same. This procedure applies to all
ancestors of the candidate. After updating any kernel adjustments, all kernels have their
statistics reset: tk := 0, sk := 0, and ck := 0 for all k.

For the example in Figure 4.9, the candidate is kernel a, its average number of busy
threads is 1.0, which is less than 90% of the average since the average is 3.7. Its priority ad-
justment is increased to eight, which correctly pipelines the program. All statistics are reset,
no other priority adjustments are increased, and the program remains correctly pipelined for
the rest of the execution.

It may seem sufficient, after updating a kernel’s adjustment, to only reset the statistics for
either that kernel or that kernel and its ancestors. Figure 4.11 is an counterexample to such
a claim. The bottleneck is kernel a, exactly as before. After correctly increasing the priority
adjustment for kernel a, kernel d will next appear to be the bottleneck. Unfortunately,
updating the priority adjustment for kernel d makes all priority adjustments the same, which
has the same effect as if they were all zero.

Updating ancestors

Figure 4.12 is an example that illustrates why the adaptive algorithms need to update the
ancestors of the indicated kernel. Subfigure (a) is the stream graph. All kernels have mul-
tiplicity one, and cost shown outside the vertex, where p is the number of processors and
ǫ≪ 1 is some small number much less than one. Since the only stateful kernel is the source,
a, the critical path has cost 1 per iteration.

84

4.3 Adaptive schedulers

Cost

1

p−1
p

1
p

ǫ

a

b1 bp−1 c1 cp−1

d

· · · · · ·

Figure 4.11: Example showing why all kernel statistics should be reset

The total work per iteration is

1 +
2p− 2

p
+ ǫ + (p− 1)

p − 2

p
+ 2(p − 1)ǫ

= p + (2p − 1)ǫ

≈ p,

so an optimal schedule on p processors requires time 1 per iteration.

Subfigure (b) is an example trace of two iterations, using the oldest-first scheduler. This
requires time 2p−1

p + ǫ
2 per iteration.

Subfigure (c) shows the busy statistics for the apriority scheduler, which is, for each kernel,
the average number of busy processors just as it finishes, but before any of its predecessors
wake up. The startup mechanism means that even on the first iteration, kernel a registers p
busy processors. The results for b and c are clear. The value for kernel d is an average: the
first kernel d that finishes sees p busy processors, the second sees p− 1 busy processors, and
the last sees two busy processors. The average can be found by pairing off in pairs, starting
with the first and last, and each pair has average p+2

2 busy processors.

The apriority and gpriority schedulers will therefore identify kernel b as the critical path,
and increase its priority. Unfortunately kernel b already always executes immediately after
kernel a in the same iteration, so increasing its priority makes no difference—it is necessary
also to increase the priority of kernel a.

4.3.4 Updating priorities for gpriority

The gpriority algorithm differs from apriority in the following ways. First, some decision has
to be made about what constitutes a kernel. Second, the dependency graph between kernels
is constructed at run-time, rather than being provided somehow by the compiler. Third,

85

RunTime/Adaptive/badoldest-join-stream.eps

4. RUN-TIME DECISIONS

a

1

b

2p−2
p
− ǫ

d1

p−2
p

d2

p−2
p

dp−1

p−2
p

c1

2ǫ

c2

2ǫ

cp−1

2ǫ

p− 1

p− 1

(a) Stream graph

Proc. 0

Proc. 1

Proc. 2

Proc. 3

Proc. 4

a b

d1

d2

d3

d4

c1

c2

c3

c4

a b

d1

d2

d3

d4

c1

c2

c3

c4

a

(b) Example trace

Kernel Average Busy threads

a p
b 2 ←
c p

d ≥ p+2
2

(c) Statistics for apriority

Figure 4.12: Example that shows the benefit from updating the ancestors, where p is the
number of processors

86

RunTime/Adaptive/need-ancestors.eps
RunTime/Adaptive/need-ancestors-trace.eps

4.3 Adaptive schedulers

this kernel dependency graph may be cyclic. Fourth, there is no concept of a steady-state
iteration.

A reasonable definition of a kernel is the source line of the caller of the StarSs task. For
a stream program, converted using str2oss or a similar tool, this definition is consistent with
apriority. When the same kernel definition is instantiated several times in a stream graph,
each instantiation is treated as a different kernel. Figures 5.15 and 5.16 show the translated
code for a stream program: lines 95 and 96 correspond to two different kernels with the same
function definition.

To construct the kernel dependency graph, in create-task, the scheduler has to map from
the task to the kernel. This can be done either by explicitly adding tags in the compiler,
or hashing the address of the work function. The latter works when the work function is
actually a wrapper, which is the case using the Mercurium source to source compiler for
OmpSs.

Figure 4.13 shows an example kernel dependency graph, constructed by gpriority for 25
frames of HD 1080p video through the H.264 decoder skeleton. There are four kernels, cor-
responding to the four stages in this H.264 decoder skeleton. This benchmark has streaming
behaviour, but it is not one dimensional. Macroblock decode and Deblock iterate over a
two-dimensional space.

To the left of each of kernel is shown the number of times it was called; e.g. Scan
was called 25 times: once per frame. Each edge shows the number of times, n, that that
dependency was seen in the PDG, and the distance, which is the average difference, D, in
task number. For example, assuming that the tile width is two or more, macroblock decode
usually depends on three of its neighbours: the tile to the left, with difference 1, the tile
above, with difference 31, and the tile above and to the right, with difference 30.1 The
average of these values is 20.7, which is close to the value that was measured. The measured
distance is a little different, because some of these dependencies are missing at the image
borders.

The priority of a task is equal to its kernel’s priority adjustment minus the task number,
as for apriority. The priority adjustments for the kernels control the overlapping of kernels.
Each kernel, however, is effectively scheduled using oldest-first, since all the tasks for the
same kernel have the same adjustment. The gpriority scheduler uses the same statistics,
shown in Figure 4.4, as apriority. Similarly, the bottleneck kernel is found in exactly the
same manner as before.

Since there is no concept of steady-state iteration, the priority adjustment for the bottle-
neck kernel cannot be increased by the number of tasks per iteration. Instead, each kernel
has a delta value, which is initialised to some small number. Whenever that kernel has its
priority adjustment increased, it is increased by the delta, and the delta is doubled. This
mechanism is rather crude, but it seems to work.

Whenever a kernel is identified as a bottleneck and its priority adjustment is increased,
the adjustments of its ancestors are updated to avoid priority inversion. For example, if the
adjustment of Entropy Decode is increased from zero to ∆, the adjustment of Scan would be
increased from zero to ∆−1. Unlike for apriority, this procedure takes account of the average
difference in task number.

1These figures are for an image size of 1920 × 1080 and a skewed tile of size 4 × 4. Per row, there are 29
complete tiles and two incomplete tiles.

87

4. RUN-TIME DECISIONS

Scann=25

Entropy
decode

n=3400 n=3375, D=1

n=25, D=1

Macroblock
decode

n=13175 n=37150, D=20.4

n=13175, D=328.5

Deblockn=13175 n=37150, D=20.4

n=13175, D=527n=23808, D=664

Figure 4.13: Kernel dependency graph for H.264 decoder skeleton

After increasing the priority adjustment for kernel k from ak to a′k = ak + ∆, each of
that kernels predecessors, p, are visited in turn. The predecessor’s priority adjustment is
updated:

a′p = max(ap, ak + ∆−Dpk) where Dpk is the distance of the edge from p to k.

The intuition is that priority inversion happens when a task has higher priority than
a predecessor. The difference in priorities of tasks is equal to the difference in priority
adjustment minus the difference in task number.

4.4 Experimental evaluation

Infrastructure and benchmarks

This section describes the experimental results for the schedulers described in Section 4.2.1,
together with the adaptive schedulers described in Section 4.3. The implementation and
results use OMP Superscalar (OmpSs), but they are not specific to it. The OmpSs compiler
generates an executable that uses the Nanos++ runtime library.

The benchmarks are listed in Table 4.5. The StreamIt 2.1.1 benchmarks [GTA06] are
one-dimensional stream programs written in the StreamIt language. They were converted
to StarSs source code using a conversion tool, known as str2oss, described in Section 5.3.

At the time of writing, Nanos++ does not yet implement renaming, described in Sec-
tion 1.4.1. If each task for a given filter were to write its output into the same temporary
array, there would be output and anti-dependencies between consecutive iterations. For this
reason, a command-line option was added to str2oss to expand the sizes of the temporary

88

RunTime/Adaptive/h264dec-gpriority.eps

4.4 Experimental evaluation

Benchmark(s) Source Parameters or input file

StreamIt 2.1.1 benchmarks MIT Twelve benchmarks in StreamIt language

Check LU factorisation SMPSs 2.1 Block size: 32 × 32, matrix size: 16 × 16 blocks

Cholesky factorisation BSC Block size: 32 × 32, matrix size: 16 × 16 blocks

H.264 decoder skeleton, supporting 3D wave Self 100 frames of Pedestrian (1080p) from
HDVideoBench [ASRV07]

Table 4.5: Benchmarks used in the evaluation

arrays by a given factor, n, and use the segments in round-robin order. Each unwanted
dependency therefore crosses n iterations rather than one.

The experimental results include measurements of the peak memory use. This is the
largest amount of memory that would be used for renaming. Since Nanos++ does not
actually do renaming, the memory use was modelled by the application.

There are four additional benchmarks written in StarSs. Check LU factorises a non-
symmetrical matrix into the product of a lower-triangular and an upper-triangular matrix,
without a permutation matrix: A = LU . It was taken as-is from the SMP Superscalar 2.1
distribution, including a correctness check at the end, which is the sparse matrix multipli-
cation of L and U . Cholesky uses LAPACK and BLAS routines to perform a Cholesky
decomposition: A = LLT .

The H.264 decoder skeleton has the same pattern of dependencies as an H.264 decoder
using the 3D wave optimisation [MAJ+09]. The entropy decoder was unrolled by 60 mac-
roblocks, and the macroblock decode and deblocking tasks were unrolled by four in each
direction, using the standard tile shape.

Scalability

Figure 4.14 shows how well the benchmarks scale, as the number of processors varies between
one and sixteen. The comparison is between the best dynamic scheduler and a serial imple-
mentation, compiled with GCC instead of the OmpSs compiler. The best scheduler is chosen
independently for each data point, in order to estimate the scalability of the application itself.

It is clear that across the benchmarks there is a wide range of scalability: filterbank scales
exceptionally well. Five benchmarks have 80% or higher efficiency to sixteen cores. Other
benchmarks, especially des, have poor scalability. As can be seen from Figure 4.14(c), most
of the benchmarks that scale poorly have the main thread running for a large proportion of
time. This shows that for these benchmarks the main thread is the bottleneck.

The reason why some benchmarks have especially poor performance is that, although
the benchmarks have been optimised using kernel unrolling, they have not benefited from
kernel fusion. This is because the str2oss tool described in Section 5.3 supports unrolling
but not fusion. This is evidence that a partitioning algorithm like that in Section 3.2 is still
beneficial, even with dynamic scheduling.

Nevertheless, the wide range of scalability means that the results of this section are
applicable both to benchmarks that scale well and benchmarks that scale poorly.

89

4. RUN-TIME DECISIONS

beamformer

bitonic−sort

channel−vocoder

dct

des

fft

fm

filterbank

mpeg−decoder

serpent

vocoder

tde

h264dec

cholesky−128−8

cholesky−64−16

cholesky−32−32

5 10 15

0
5

10
15

Number of processors

S
pe

ed
up

5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Number of processors

E
ffi

ci
en

cy

(a) Speedup (b) Efficiency = speedup / num. processors

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of processors

P
ro

po
rt

io
n

tim
e

m
ai

n
th

re
ad

 r
un

ni
ng

(c) Fraction of time main thread is running

Figure 4.14: Scalability of the benchmarks

90

RunTime/Adaptive/scalability-legend.eps
RunTime/Adaptive/scalability-speedup.eps
RunTime/Adaptive/scalability-efficiency.eps
RunTime/Adaptive/scalability-main.eps

4.4 Experimental evaluation

Average and worst-case results

Average Figure 4.15(a) and (b) show, for each scheduler, the average utilisation and av-
erage peak memory use, where the average is taken across all streaming benchmarks. The
non-streaming benchmarks were excluded, since they are not supported by wave and apriority.
The memory use is the multiple of that required by the sequential version of the benchmark.
It includes all data regions used by the benchmark and renamed by the run-time, but it
excludes data structures used by the run-time itself; for example to store the PDG.

Three heuristics have consistently poor average performance, between 7% and 10% worse
than oldest and the two adaptive policies. These are botlev, crit, and mdesc; all of which
suffer due to the overhead of recalculating the bottom level or the number of descendants as
the PDG is built.

The averaged peak memory footprint shows a wide range: toplev is particularly prone to
poor back pressure, causing excessive average memory use. The oldest, apriority and gpriority
schedulers have considerably lower memory use than the others, since these schedulers tend
to overlap few stream program iterations.

Robustness Figure 4.15(c) and (d) compares the robustness of the schedulers. In Fig-
ure 4.15(c), each data point is the worst case ratio of efficiency, which is the efficiency of the
scheduler, divided by the efficiency of the best scheduler, for that benchmark and number of
processors. The worst case is found across the streaming benchmarks. A value of 1.0 on the
y-axis therefore indicates that, for all benchmarks, the scheduler achieves the best perfor-
mance seen. Figure 4.16 shows the same results, but magnified to show only the efficiency
of the more robust schedulers.

Figure 4.15(d) is the worst case memory use, as a multiple of the sequential version. As
before, the worst case is found across all streaming benchmarks.

As before, botlev, crit and mdesc are clearly the worst-performing schedulers, again due
to the overhead of calculating the bottom level or number of descendants.

The only robust schedulers are the adaptive schedulers, apriority and gpriority. Of the
non-adaptive schedulers, oldest is best performing overall, but its worst efficiency is up to
8% lower.

The worst case peak memory footprint shows a wider range: toplev, fifo, and lifo have
excessive memory use for certain benchmarks. The remaining heuristics have intermedi-
ate memory use, which is considerably higher than that of oldest, apriority, and gpriority.
Compared with oldest, the two adaptive schedulers use a negligible amount of additional
memory.

Detailed results

This section compares the efficiency and memory use of the six best schedulers. These are
fifo, oldest, toplev, wave, and the two adaptive schedulers: apriority and gpriority. The other
schedulers were seen to have poor robustness and average performance.

Figure 4.17 shows the experimental results for the StreamIt benchmarks. There are two
plots for each scheduler. The first is the ratio of efficiency: the efficiency of that scheduler
divided by the efficiency of the best scheduler for the same benchmark and number of pro-

91

4. RUN-TIME DECISIONS

fifo

lifo

oldest

toplev

botlev

crit

mchild

mdesc

wave

apriority

gpriority

Average across benchmarks

5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of processors

E
ffi

ci
en

cy

5 10 15

0
5

10
15

20
25

30

Number of processors

P
ea

k
m

em
or

y
(m

ul
tip

le
 o

f s
eq

ue
nt

ia
l)

(a) Mean efficiency

(b) Geometric mean peak
memory

Worst benchmark

2 4 6 8 10 12 14 16

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of processors

R
at

io
 o

f e
ffi

ci
en

cy

2 4 6 8 10 12 14 16

0
50

10
0

15
0

Number of processors

P
ea

k
m

em
or

y
(m

ul
tip

le
 o

f s
eq

ue
nt

ia
l)

(c) Relative efficiency (d) Peak memory

Figure 4.15: Average and worst case results

92

RunTime/Adaptive/legend.eps
RunTime/Adaptive/mean-out-all.eps
RunTime/Adaptive/gmean-max-all.eps
RunTime/Adaptive/drop-util.eps
RunTime/Adaptive/drop-max-mem.eps

4.5 Conclusions

2 4 6 8 10 12 14 16

0.
80

0.
85

0.
90

0.
95

1.
00

Number of processors

R
at

io
 o

f e
ffi

ci
en

cy

Figure 4.16: Worst case results: detail of efficiency of most robust schedulers

cessors. The y axis has been expanded to show greater detail—no points were lost in doing
so. The second plot is the peak memory use, as a multiple of the sequential version.

The apriority scheduler has the highest efficiency and lowest memory use. The gpriority
scheduler has slightly lower efficiency due to the greater overhead, and the same low memory
use.

Figure 4.18 shows the experimental results for the non-StreamIt benchmarks. The wave
and apriority schedulers were excluded, since they both require regular stream programs, so
do not support these benchmarks. It was not possible to determine the memory footprint,
because Nanos++ does not currently implement renaming. As described in Section 4.4, the
renaming memory footprint was modelled by the application, and this was only implemented
for the StreamIt benchmarks.

The gpriority scheduler has the best efficiency and memory use overall.

4.5 Conclusions

This chapter introduced two new low-complexity adaptive dynamic scheduling algorithms
for stream-like programs. Many existing scheduling algorithms, listed in Table 4.1, either
schedule the whole program in advance, or they need to know the execution time of every
task in advance, or they are too slow.

The scheduling algorithms in this chapter have better average and worst-case performance
than all the scheduling algorithms in Table 4.2. The scheduling overhead at run-time is
similar to that of oldest-first. They take advantage of the stream graph representation, by
giving each kernel in the stream graph its own priority adjustment.

93

RunTime/Adaptive/drop-util-zoom.eps

4. RUN-TIME DECISIONS

beamformer

bitonic−sort

channel−vocoder

dct

des

fft

fm

filterbank

mpeg−decoder

serpent

vocoder

tde

Ratio efficiency Peak memory Ratio efficiency Peak memory

5 10 15

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Number of processors

R
at

io
 e

ffi
ci

en
cy

5 10 15

0
50

10
0

15
0

Number of processors

P
ea

k
m

em
or

y
(m

ul
tip

le
 o

f s
eq

ue
nt

ia
l)

5 10 15

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Number of processors

R
at

io
 e

ffi
ci

en
cy

5 10 15

0
50

10
0

15
0

Number of processors

P
ea

k
m

em
or

y
(m

ul
tip

le
 o

f s
eq

ue
nt

ia
l)

(a) fifo (b) oldest

5 10 15

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Number of processors

R
at

io
 e

ffi
ci

en
cy

5 10 15

0
50

10
0

15
0

Number of processors

P
ea

k
m

em
or

y
(m

ul
tip

le
 o

f s
eq

ue
nt

ia
l)

5 10 15

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Number of processors

R
at

io
 e

ffi
ci

en
cy

5 10 15

0
50

10
0

15
0

Number of processors

P
ea

k
m

em
or

y
(m

ul
tip

le
 o

f s
eq

ue
nt

ia
l)

(c) toplev (d) wave

5 10 15

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Number of processors

R
at

io
 e

ffi
ci

en
cy

5 10 15

0
50

10
0

15
0

Number of processors

P
ea

k
m

em
or

y
(m

ul
tip

le
 o

f s
eq

ue
nt

ia
l)

5 10 15

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Number of processors

R
at

io
 e

ffi
ci

en
cy

5 10 15

0
50

10
0

15
0

Number of processors

P
ea

k
m

em
or

y
(m

ul
tip

le
 o

f s
eq

ue
nt

ia
l)

(e) apriority (f) gpriority

Figure 4.17: Comparison of the scheduling heuristics: StreamIt

94

RunTime/Adaptive/per-heuristic-legend-1.eps
RunTime/Adaptive/bf-util-1.eps
RunTime/Adaptive/bf-max-mem-1.eps
RunTime/Adaptive/oldest-util-1.eps
RunTime/Adaptive/oldest-max-mem-1.eps
RunTime/Adaptive/toplev-util-1.eps
RunTime/Adaptive/toplev-max-mem-1.eps
RunTime/Adaptive/wave-util-1.eps
RunTime/Adaptive/wave-max-mem-1.eps
RunTime/Adaptive/apriority-util-1.eps
RunTime/Adaptive/apriority-max-mem-1.eps
RunTime/Adaptive/gpriority-util-1.eps
RunTime/Adaptive/gpriority-max-mem-1.eps

4.5 Conclusions

h264dec cholesky−128−8 cholesky−64−16 cholesky−32−32 check LU

5 10 15

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Number of processors

R
at

io
 e

ffi
ci

en
cy

5 10 15

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Number of processors

R
at

io
 e

ffi
ci

en
cy

5 10 15

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Number of processors

R
at

io
 e

ffi
ci

en
cy

5 10 15

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Number of processors

R
at

io
 e

ffi
ci

en
cy

(a) fifo (b) oldest (c) toplev (d) gpriority

Figure 4.18: Comparison of the scheduling heuristics: non-StreamIt

95

RunTime/Adaptive/per-heuristic-legend-2.eps
RunTime/Adaptive/bf-util-2.eps
RunTime/Adaptive/oldest-util-2.eps
RunTime/Adaptive/toplev-util-2.eps
RunTime/Adaptive/gpriority-util-2.eps

4. RUN-TIME DECISIONS

96

Chapter 5

Support Tools

This chapter describes the support tools that were developed in the course of this thesis.
StarssCheck is a debugging tool, based on Valgrind [NS07], that finds bugs in StarSs pro-
grams. Paraver Animator (prvanim) is a simple tool that helps visualise the progress of a
parallel application, by creating an animated GIF file. StreamIt to OmpSs (str2oss) is a
tool to convert streaming programs in the StreamIt language into task based programs using
StarSs.1.

5.1 Debugging using StarssCheck

A programming language without debug tools may be a fine research vehicle, but it is unlikely
to be widely adopted, as users become frustrated by bugs in their code, blame the compiler,
and think that the language is hard to use. Moreover, parallel programs often harbour
subtle intermittent bugs, which may not be noticed for months or years. If StarSs or OmpSs
become mainstream, and if they are used for production code, then people will want as much
evidence as possible that their code is free of hidden bugs.

This section describes StarssCheck, a debugging tool that finds bugs in StarSs programs.
It was used, for example, to check the output of the StreamIt to StarSs converter described
in Section 5.3. Similar ideas could be used in a tool supporting SPM. The tool was written
for StarSs because StarSs is more mature, and it already has real users.

Section 1.4.1 explains StarSs in enough detail to understand StarssCheck. It suggested
that the pragmas could sometimes have been written by the compiler instead of the pro-
grammer. StarssCheck is the converse. Although it is hard for the machine to work out the
pragmas from scratch, it is relatively easy for the machine to check them.

StarssCheck checks that tasks only access memory that they are supposed to. A task
can read any argument marked as input, but it mustn’t change it. This could be enforced
using const in C, assuming one never removes const using a cast. Adding const to existing
code can be time-consuming, however, so is often avoided. A task can read or write any
argument marked as output or inout, and modify the stack at or below its arguments. A
task can always execute its code and read constant values. It mustn’t access any other data

1Recall that StarSs is the language and OmpSs is the implementation—see Section 1.4.1

97

5. SUPPORT TOOLS

in memory1, something that is certainly hard for the compiler to check statically. If the
task does try to read or write elsewhere in memory, it normally wouldn’t be stopped from
doing so; the program might seem to work most of the time, but have intermittent bugs—see
Section 5.1.1.

StarssCheck uses an analysis tool that runs under Valgrind [NS07], a widely-used frame-
work for binary instrumentation. The default Valgrind tool, memcheck [SN05], warns the
user whenever the program’s behaviour depends on invalid data; for example when a con-
ditional branch depends on the contents of memory returned by malloc. StarssCheck is not
specific to Valgrind. It requires a binary translation tool that has some mechanism similar
to Valgrind’s client requests, which are calls from the guest program into the analysis tool.
The tool could, for example, have been written for Pin [LCM+05].

As mentioned in Section 1.4.1, a compiler that doesn’t understand StarSs will ignore the
pragmas, and compile a valid sequential program. StarssCheck runs the sequential version of
the program under Valgrind, and checks that, for the supplied input, the pragma annotations
are correct. StarssCheck can be adapted to any programming language for which a valid
sequential program can be easily derived; e.g. by ignoring pragmas or keywords. It also
requires the language to supply some restrictions on the regions of memory that can be
accessed by a task; there is little point if a task can freely access shared memory.

5.1.1 Common StarSs errors

Figure 5.1 illustrates the main errors that can be found using StarssCheck. In Figure 5.1(a),
the function accesses memory via a pointer embedded in a structure. This pointer, unlike the
function arguments, will not have been tracked or renamed by the OmpSs runtime system.
The read will not be seen as a dependency between tasks, and, on distributed memory, the
data will not have been transferred via DMA. On CellSs, p->ptr is a pointer in the PPE’s
address space, but it is being dereferenced on an SPE.2 Normal load and store operations on
an SPE are not subject to memory protection, and addresses wrap modulo the size of the
local store, so the function will read some value. The PPE and SPEs all use 32-bit pointers,
which are not distinguished by the C type system.

In Figure 5.1(b), the function reads outside array x. This example also shows how StarSs
supports variable length arrays: by specifying the length in the pragma rather than the C
prototype. The tool must therefore handle array sizes that are not known until run time.
Conversely, in Figure 5.1(c), if isLong==0, the array is declared larger than necessary, and
neighbouring memory will be corrupted if the caller has allocated an array smaller than 20
elements.

Subfigure (d) is missing a pragma wait before the main program accesses array x. A wait
is required even for write-after-read dependencies, because task creation returns immediately
without taking a copy. The original contents of the array should remain unmodified until
all tasks that read it have been allocated to SPEs, and outgoing DMAs have completed. All
missing waits are race conditions, hence non-deterministic and notoriously hard to debug.

1In SMPSs, the programmer can take advantage of shared memory, covertly sharing data through opaque
pointers, and taking care of locking, memory consistency, and so on. StarssCheck could be extended to allow
this, either by having the programmer tell StarssCheck what was going on, or by tracking opaque pointers.

2The pointer dereference could be made to work using the ea attribute, but the dependency would still
not be tracked by the OmpSs runtime system.

98

5.1 Debugging using StarssCheck

In Figure 5.1(e), the direction of data transfer is incorrect. This bug will often be easy to
find because it is so blatant, but it can also be found by StarssCheck. In Figure 5.1(f), the
author has not noticed that argument x can be NULL. While StarSs could be extended to
allow NULL variable pointers, and pass them unmodified to the task, this is not the current
behaviour. This example, and the example in Figure 5.1(c) may cause exceptions deep inside
the run-time library, for which source may not be available.

StarssCheck finds all the mistakes in Figure 5.1. It is also a good place to check whether
function arguments are correctly aligned for CellSs. This constraint is imposed by the Cell
B.E. DMA engine [IBM09, §7.2.1].
5.1.2 How StarssCheck works

Overview

Figure 5.2 shows the structure of StarssCheck. A translation tool reads the StarSs annota-
tions from the source code, generating a wrapper function for each task. It also translates
the finish and wait pragmas into appropriate macros. Translation currently uses a Python
script, but a more robust tool, based on Mercurium [BDG+04], would be better. The trans-
lated source code is compiled as normal, and executed under Valgrind, using the Starssgrind
tool.

An alternative is to take an executable generated by the OmpSs compiler, and intercept
all calls to the run-time library. The benefit would be that the program would not need
recompilation, but only if you are using the same variant of OmpSs; and not, for example,
CellSs (since Valgrind does not support the Cell B.E.). This approach would work, but it
also would be specific to a certain version of the run-time API, which may change in future.

High-level interface to Starssgrind

StarssCheck uses Valgrind’s client request mechanism, which recognises a “magic” sequence
of instructions in the binary. The instructions achieve nothing useful, unless the program is
running under Valgrind, in which case they are recognised as a call into the analysis tool.

Table 5.1 lists the client request macros provided by Starssgrind. The precise semantics
are given in Section 5.1.2, but the general idea is apparent in Figure 5.3, which shows the
translated version of the bmod function (Figure 1.6).

Translation can be done using text substitution, without changing line numbers. Each
task is given a wrapper function, which is a simple mechanism to define the region of stack it
can touch, irrespective of the calling convention. The PUSH CONTEXT macro enters a task.
It sets up the task’s context, which initially allows access only to the .text section and the
stack below the wrapper function’s frame pointer. The INPUT BLOCK, OUTPUT BLOCK
and INOUT BLOCK macros each declare a contiguous region of memory to be accessible by
the task. The POP CONTEXT macro leaves a task, and restores the master thread’s context.
The master thread is subsequently allowed read-only access to the task’s input blocks, and
no access to its output and inout blocks.

The WAIT ALL and WAIT ON macros support the finish and wait on pragma clauses,
respectively. It is not necessary to translate the start pragma clause.

99

5. SUPPORT TOOLS

#pragma css task input(p) \
output (y)

void a (struct t *p , int y [1])
{

y [0] = *(p−>ptr) ;
}

#pragma css task output(y [n]) \
input(x [n] , n)

void b(int *y , int *x , int n)
{

for (int k=0; k<n ; k++)
y [k] = x [k] + x [k+1]

}

(a) Arbitrary memory access (b) Array too small

int x [1 0] ;
c (x , 0) ;

#pragma css task output (x[20])
void c (int *x , int isLong)
{

int l en = isLong ? 20 : 10 ;
for (int k=0; k<l en ; k++)

x [k] = k ;
}

d(x , y) ;
// shou l d wai t here
// #pragma css wai t on (x)
x [0] = 1 ;

#pragma css task input(x) output (y)
void d(int x [1] , int y [1]) { . . . }

(c) Output array too large (d) Missing wait

#pragma css task input(x ,y) \
output (z)

void e (int x [1 0] ,
int y [1 0] ,
int z [1 0])

{
for (int k=0; k<10; k++)

x [k] = y [k] + z [k] ;
}

#pragma css task output(x[10])
void f (int *x)
{

i f (x == NULL)
return ; /* do nothing */

/* . . . */
}

(e) Incorrect transfer direction (f) NULL pointer

Figure 5.1: Example mistakes found by StarssCheck

Source

Translator

Source

Compiler

GCC
Executable

Valgrind

Starssgrind

Figure 5.2: Structure of StarssCheck

100

SupportTools/StarssCheck/csscheck-tool.eps

5.1 Debugging using StarssCheck

1 a t t r i b u t e ((n o i n l i n e))
2 void css wrapped bmod (f loat row [3 2] [3 2] ,
3 f loat co l [3 2] [3 2] ,
4 f loat i nner [3 2] [3 2])
5 {
6 int i , j , k ;
7 PUSH CONTEXT() ;
8 INPUT BLOCK(row , s izeof (f loat [3 2] [3 2])) ;
9 INPUT BLOCK(col , s izeof (f loat [3 2] [3 2])) ;

10 OUTPUTBLOCK(inner , s izeof (f loat [3 2] [3 2])) ;
11 for (i =0; i <32; i++)
12 for (j =0; j <32; j++)
13 for (k=0; k<32; k++)
14 i nner [i] [j] −= row [i] [k] * co l [k] [j] ;
15 POP CONTEXT() ;
16 }
17

18 a t t r i b u t e ((n o i n l i n e))
19 void bmod(f loat row [3 2] [3 2] ,
20 f loat co l [3 2] [3 2] ,
21 f loat i nner [3 2] [3 2])
22 {
23 css wrapped bmod (row , col , i nner) ;
24 }

Figure 5.3: Translated version of the bmod function from Figure 1.6

Table 5.1: StarssCheck client requests

Request Description

PUSH CONTEXT(void) Enter task
INPUT BLOCK(void *address, size t len) Declare input block
OUTPUT BLOCK(void *address, size t len) Declare output block
INOUT BLOCK(void *address, size t len) Declare inout block
POP CONTEXT(void) Return from task
WAIT ON(void *address) Restore given array
WAIT ALL(void) Restore all arrays

101

5. SUPPORT TOOLS

1 // b e f o r e
2 f (a) ;
3 // a f t e r

.text

heap

stack

all baseline

1. Before f

current

a

2. During f

current

a

3. After f

current

(a) Program (b) Contexts

Figure 5.4: Starssgrind Contexts

Starssgrind contexts

Starssgrind, the Valgrind tool, maintains several contexts, which define the accessible regions
of memory. The current context is currently active: all accesses to memory are checked
against it, and bad accesses immediately generate a warning. The all context defines the
whole memory space accessible by the sequential program. It is the initial context for the
main thread, and it defines the memory that the main thread can pass to tasks. The baseline
context is the starting point for tasks, which contains only the .text section. Inside a task,
the parent context defines the context of the main thread. When an array is passed to a
task, it is removed or rendered read only in the parent context. Such regions are moved to
the dead context, which records the sizes of arrays, so that when the main thread performs
a wait, the correct region of memory can be restored.

A context is a disjoint set of regions, with each region covering a contiguous part of
memory, with read-only or read-write access. The regions are stored in a balanced tree (our
implementation uses a scapegoat tree [GR93]). Except within the dead context, adjacent
regions with the same access rights get merged.

StarssCheck uses a tree representation rather than shadow bits for three main reasons.
The first reason is that we do not expect the compiler to generate accesses outside the
supplied arrays. This is different from validity checking in memcheck, where copying an array
containing uninitialised padding should make the destination padding uninitialised, rather
than immediately generating warnings. The second reason is that, for realistic programs,
there are few active regions, so it is feasible to use a tree; often even a list is sufficient.
The third reason is that extending memcheck’s efficient shadow bit representation to handle
read-only regions and switching between contexts would be considerable work, with marginal
benefit. See Section 5.1.3, however, for possible future work.

Figure 5.4 shows the current context before, during, and after task f. Assuming f is the
first task created, the context before calling f is the same as the all context. During f, only
the stack below its arguments, the .text section, and the argument a are visible. After calling
f, a is not accessible until the main thread waits on a.

Since it is expensive to traverse the context tree for every memory access, we use a direct
mapped region cache, based on the instruction address. The access is first checked against the
region that the instruction previously hit. The region cache is cleared after any client request

102

SupportTools/StarssCheck/memmap.eps

5.1 Debugging using StarssCheck

1 t3 : I32 t41 : I32 t84 : I32 t85 : I1 t86 : I32 t87 : I32 t88 : I1
2

3 −−−−−− IMark(0 x26A2 , 4) −−−−−−
4 PUT(60) = 0x26A2: I32
5 t3 = GET: I32(4)
6 t41 = GET: I32(168)
7 t84 = LDle : I32 (0 xF028E090 : I32)
8 t85 = CmpLT32U(t3 , t84)
9 DIRTY t85 : : : c s h e l p e r [rp=3]{0 xf0082850 }(t3 , 0 x1 : I32 , 0 x26A2 : I32)

10 t86 = LDle : I32 (0 xF028E094 : I32)
11 t87 = Add32(t3 , 0 x4 : I32)
12 t88 = CmpLT32U(t86 , t87)
13 DIRTY t88 : : : c s h e l p e r [rp=3]{0 xf0082850 }(t3 , 0 x1 : I32 , 0 x26A2 : I32)
14 STle(t3) = t41

Figure 5.5: VEX IR for a single store instruction: movss %xmm1,(%ecx). The address in the
cache, for this particular instruction, is 0xF028E090

1 2 5 10 20 50

1e
−

02
1e

−
01

1e
+

00
1e

+
01

1e
+

02

Matrix number blocks (NB)

ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

or
ig−

O3or
ig−

O0−
gnu

lgr
ind

sta
rss

ch
ec

k

mem
ch

ec
k

1 2 5 10 20 50

0.
2

0.
5

2.
0

5.
0

20
.0

10
0.

0

Matrix number blocks (NB)

ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

2K
B c

ac
heno

 c
ac

he

nu
lg

rin
d

m
em

ch
ec

k

list, no cache
tree, no cache
list, 2KB cache
tree, 2KB cache

(a) StarssCheck in context (b) StarssCheck variants

Figure 5.6: Performance results for Sparse LU factorisation

that switches the current context or deletes memory from it. The cache check is inserted
directly into the VEX IR, which is the static single-assignment intermediate code used by
Valgrind. Figure 5.5 shows the intermediate code generated by a single store instruction,
with the non-analysis code in bold.

5.1.3 Evaluation

Most importantly, StarssCheck should find all the bugs within its remit, and it should not
complain about code that is actually correct. In other words, it should have few false
negatives (the former), and few false positives (the latter). StarssCheck finds all the mistakes
in Figure 5.1, as confirmed by our test cases, and it only creates the false positives discussed
in Section 5.1.3.

103

SupportTools/StarssCheck/sparse.eps
SupportTools/StarssCheck/sparse-css.eps

5. SUPPORT TOOLS

Performance

A tool such as StarssCheck will only be used if it is reasonably fast. Our experiments show
that unless tasks are so small that OmpSs itself is slow, the execution time under StarssCheck
is similar to memcheck, which should be acceptable.

Figure 5.6 shows the execution times for the sparse LU factorisation example from the
OmpSs distribution, using the default block size of 32×32. Figure 5.6(a) shows the execution
time for square matrices up to 64× 64 blocks. For matrices of size about 640× 640 (20× 20
blocks) or above, the slowdown of StarssCheck is close to 8 times compared with the original,
unoptimised code. For comparison, memcheck is about 16 times slower than the original,
and nulgrind, which is Valgrind without instrumentation, is about four times slower.

Subfigure (b) compares four variants of StarssCheck, with the region cache enabled and
disabled, and using either a tree or a linked list to hold the set of regions. The difference
between the tree and linked list is insignificant for this example, but the cache gives a speed-
up of about 3.5, if the matrix size is 16 blocks or more. The mean number of regions is
approximately 9, requiring an average search depth of 1.5. The average number of regions
decreases slightly as the matrix increases, because a greater proportion of time is spent in
tasks, which have a below average number of valid regions.

Figure 5.7(a) shows the “nasty” benchmark, which is intended to show worst case perfor-
mance. This benchmark has extremely fine grain tasks: each task contains a single arithmetic
statement. StarssCheck has high overhead because OmpSs itself has high overhead. The ex-
ecution times are shown in Figure 5.7(c) and (d), and StarssCheck is much slower than
memcheck. The region cache provides little benefit, because every access to the a array
misses. The average search depth in the tree increases logarithmically in the number of
tasks, which is the worst case.

The problem with the “nasty” benchmark is that the tasks are too small. Unrolling is a
standard technique to increase task granularity. Figure 5.7(b) is a better implementation of
the program, with the loops both unrolled by a factor of 1,024. This requires the a array to
be reordered. Figure 5.7(e) shows the execution time of the modified benchmark, which is
comparable to memcheck.

Limitations

The main limitation of StarssCheck is that, unlike memcheck, it does not track the validity
of data. Figure 5.8(a) shows a task with an output block that should be marked inout. There
is in fact, inside StarssCheck, no difference between OUTPUT BLOCK and INOUT BLOCK,
since both allow the task to read and write, and both make the block inaccessible to the
main thread until it waits.

Fortunately, this error can be found using memcheck. It is advisable to run under mem-
check in any case, because memcheck finds errors that are outside the scope of StarssCheck.
StarssCheck could include a translator that invalidates memory corresponding to each out-
put array, using the VALGRIND MAKE MEM UNDEFINED memcheck client request. Clearly
the functionality of memcheck and StarssCheck could be combined into a single tool.

The current implementation of StarssCheck fully supports CellSs, and a subset of SMPSs.
SMPSs introduces array region specifiers, which describe a region in a multi-dimensional
array, and opaque pointers, which are ignored by the run-time, and allow tasks to exploit

104

5.1 Debugging using StarssCheck

1 #pragma css task inout (p)
2 void f (int *p)
3 {
4 p [0] += 1 ;
5 }
6

7 int * nasty (void)
8 {
9 int *a = mal loc (s izeof (int [NB* 2])) ;

10 int j ;
11 memset(a , 0 , s izeof (int [NB* 2])) ;
12

13 #pragma css start
14 /* Process even e lements */
15 for (j =0; j < NB*2 ; j += 2)
16 f (&a [j]) ;
17

18 /* Process odd e lements */
19 for (j =1; j < NB*2 ; j += 2)
20 a [j] += 1 ;
21 #pragma css f in i sh
22 return a ;
23 }

(a) Source code (nasty)

1 #pragma css task inout (p)
2 void f (int p [1 0 2 4])
3 {
4 int k ;
5 for (k=0; k<1024; k++)
6 p [k] += 1 ;
7 }
8

9 int *nasty1k (void)
10 {
11 int *a = mal loc (s izeof (int [NB* 2 0 4 8])) ;
12 int j , k ;
13 memset(a , 0 , s izeof (int [NB* 2 0 4 8])) ;
14

15 #pragma css start
16 /* Process even b l oc k s */
17 for (j =0; j < NB*2048; j += 2048)
18 f (&a [j]) ;
19

20 /* Process odd b l oc k s */
21 for (j =1024; j < NB*2048; j += 2048)
22 for (k=0;k<1024; k++)
23 a [j+k] += 1 ;
24 #pragma css f in i sh
25 return a ;
26 }

(b) Source code (nasty1k)

1e+01 1e+03 1e+05 1e+07

1e
−

02
1e

−
01

1e
+

00
1e

+
01

1e
+

02

Number of tasks (NB)

ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

or
ig−

O3or
ig−

O0−
gnu

lgr
indst

ar
ss

ch
ec

k(
lis

t)

m
em

ch
ec

k

st
ar

ss
ch

ec
k(

tre
e)

(c) StarssCheck in context

1e+01 1e+03 1e+05

0.
5

1.
0

2.
0

5.
0

20
.0

50
.0

20
0.

0

 Number of tasks (NB)

ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

2KB cache

lis
t

tre
e

no cache

list, no cache
list, 2KB cache
tree, no cache
tree, 2KB cache

(d) StarssCheck variants

1e+01 1e+02 1e+03 1e+04 1e+05

0.
5

1.
0

2.
0

5.
0

20
.0

50
.0

20
0.

0

Number of tasks (NB)

ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

lis
t,

2K
B

 c
ac

he

lis
t,

no
 c

ac
he

tre
e,

 2
KB c

ac
he

tre
e,

 n
o

ca
ch

e

m
em

ch
ec

k

list, no cache
list, 2KB cache
tree, no cache
tree, 2KB cache
memcheck

(e) After unrolling by 1,024

Figure 5.7: Worst case “nasty” benchmark

105

SupportTools/StarssCheck/nasty.eps
SupportTools/StarssCheck/nasty-css.eps
SupportTools/StarssCheck/nasty1k-css.eps

5. SUPPORT TOOLS

#pragma css task output(x)
void b(int x [1])
{

x [0] += 1 ;
}

#pragma css task input(x)
void f (int x)
{

p r i n t f (”x i s %d\n” , x) ;
}

(a) Argument should be marked inout (c) printf does not respect StarSs

#pragma css task input(s) output(y)
void f (char s [1 3] , int y [1])
{

y [0] = s t r l e n (s) ;
}

(b) SIMD strlen reads outside array

Figure 5.8: Potential false negatives and false positives

the shared memory hardware. Array region specifiers require a straightforward extension
to bounds checking. StarssCheck should skip validity checking for addresses calculated via
opaque pointers. This requires tracking, either using static analysis or shadow bits similar
to memcheck. Tracking of opaque pointers is orthogonal to the rest of the tool.

Eliminating false positives

Figure 5.8(b) shows an example where StarssCheck can generate spurious warnings. A SIMD
implementation of strlen may read memory above and below the string itself (but inside
the same memory page). Note that memcheck also has difficulty following some C library
functions [SN05], and we can use the existing Valgrind machinery to replace functions such
as strlen. Section 5.3.1 describes how the StreamIt to OmpSs converter introduces memcpy
operations between the inputs and/or outputs and temporary arrays; these suffer from a
similar problem. It does not use Valgrind’s replacement machinery as yet; instead, it uses a
simple version of memcpy when the code is to be executed under StarssCheck.

Also, certain C library functions, such as printf, do not respect the StarSs memory model.
The suppressions mechanism of Valgrind can suppress any warnings that arise.

5.1.4 Related work

We are unaware of any other tools that check the input and output definitions of task-based
programs. There are, however, several tools that find data races in shared memory. The
crucial difference is that StarssCheck verifies information needed by the OmpSs run-time for
the program to work at all, whereas the data race detectors discover unordered, and therefore
racing, accesses to the same location in memory. Of the motivating examples in Figure 5.1,
only subfigure (d) is a data race. The other errors cause the run-time to fail to transfer the
correct data in or out of the task.

The Cilk Nondeterminator [FL99] finds data races in Cilk programs. A non-deterministic
Cilk program is not necessary wrong, since the language provides locks and it allows com-
munication through shared memory [MIT98]. Nondeterminator checks that programs that
are supposed to be deterministic are in fact so. The algorithm assigns an ID to each task

106

5.2 Performance visualisation using Paraver Animator

(a) 13th image (b) 38th image (c) 67th image

(d) Zoom showing the legend at the bottom of each image

Figure 5.9: Three instants during the execution of the H.264 decoder on 25 processors

at runtime, and maintains, for every location in memory, the IDs of its most recent writer
and some previous reader. It checks whether accesses are ordered via Cilk’s shared memory
model. Its “SP-bags” algorithm assumes that dependencies between tasks follow a series-
parallel DAG, which is true for Cilk but not for OmpSs. Hence it is unlikely to be possible
to adapt the algorithm for our purposes.

Many tools find data races in multi-threaded programs. Helgrind [NS07] uses the
Eraser algorithm [SBN+97] to find data races in POSIX pthreads programs. ThreadSani-
tizer [Ser09] uses a hybrid algorithm based on happens-before and locksets. CORD [Prv06]
and ReEnact [PT03] are hardware techniques to detect data races. MTRAT [IBM] is a
race detector for Java. Since a StarSs program is ultimately implemented using threads,
these tools could find the data race in Figure 5.1(d), but they could not check whether the
StarSs pragma annotations are correct.

5.2 Performance visualisation using Paraver Animator

This section describes the prvanim (Paraver Animator) performance tool, which was devel-
oped in the course of this thesis. It is a simple tool, which has, nonetheless, proven quite
useful.

It accepts a Paraver trace, an index file, and various command-line arguments, and it
generates an animated GIF, which shows the progress of the program through time. Each
image in the GIF file shows the tasks completed or active at the end of its time interval,
together with a simplified Paraver trace and optional legend at the bottom.

Figure 5.9 shows three images from an execution of the H.264 decoder on 25 processors.
This is the scan variant of the H.264 decoder, which overlaps decoding of multiple output

107

SupportTools/Prvanim/example-prvanim-one.eps
SupportTools/Prvanim/example-prvanim-two.eps
SupportTools/Prvanim/example-prvanim-three.eps
SupportTools/Prvanim/example-prvanim-legend.eps

5. SUPPORT TOOLS

frames1. This example is for twenty five output frames, arranged in each image in row-
major order; each pixel is a macroblock in one of the frames. The colours represent the
four tasks that must be completed for each macroblock or frame, each of which is either
currently working (bright) or completed (dark)—see subfigure (d). Almost all pixels in the
images happen to be in one of four states: scanning for the next frame (whole frame is yellow),
unprocessed macroblocks in a ready frame (dark yellow), entropy decoded macroblocks (red),
or completed macroblocks (blue).

The index file maps task numbers in the Paraver trace to regions in the image. The
tool paints the requested regions bright when the task starts and darker when it stops. The
programmer has to somehow create the index file. Although this is extra work, it is an
opportunity to write an index file that clearly represents the progress of the application, by
laying out the image in whichever way makes the most sense. The str2oss tool has an option
to generate a prvanim index file in addition to the C source code. Each row is a filter, and
the iterations of the main loop are arranged from left to right; the width of each task is
therefore inversely proportional to that filter’s multiplicity.

The prvanim tool is useful for understanding the big picture. Once the problem is under-
stood in general terms, one may need to use Paraver to find the root cause—which may be
a communications bottleneck, poor cache hit ratio, or some other problem.

5.3 StreamIt to OmpSs conversion

This section describes str2oss (StreamIt to OmpSs), a tool to translate a streaming program
written in StreamIt [TKA02] into a task based program using OmpSs. As mentioned in
Section 1.4.1, the tool translated the StreamIt benchmarks to StarSs, which can be compiled
using the OmpSs compiler, so that Chapters 3 and 4 could use the same benchmarks.

The tool converts the kernels in the StreamIt program into functions defining StarSs
tasks. Each task processes one or more firings of its kernel’s work function. The tool also
generates the main function. The main function allocates memory for the FIFOs, and it
contains a loop, each iteration of which calls these functions as needed in a steady-state
iteration.

The point of str2oss was to save time and enable the research in Chapter 4, rather than
being a finished product. Nevertheless, it generates high quality code, so long as it is used
with care. The major shortcoming of the tool is that it doesn’t support peeking forward in
the stream, as indicated by peek N on a work function. It also doesn’t support feedback
loops, variable rate kernels and teleport messaging. There are also some minor deviations
from StreamIt syntax, driven by a pragmatic comparison of the cost of fixing str2oss and
the cost of editing the benchmarks. Section 5.3.3 discusses these limitations of str2oss and
suggests how they could be remedied.

The tool doesn’t do kernel fusion, as required by the partitioning optimisation from
Section 3.2; and the queue sizing optimisation from Section 3.3 is irrelevant for OmpSs. It
supports unrolling, under the user’s control, via a configuration file. It always generates code
that works, but for good performance the user must control the high-level transformations
described in Subsection 5.3.4.

1The words “frame” and “image” refer to an H.264 frame and an image in the animated GIF, respectively,
although both words could have meant either.

108

5.3 StreamIt to OmpSs conversion

Parse StreamIt
C preprocessor

pycparser

Simplify AST
Uninline filters; etc.

Get parameters
Build, compile, and
run C++ build file

Transformations
Unrolling

Generate StarSs
source

Figure 5.10: Main phases in StreamIt to OmpSs conversion

5.3.1 The conversion process

Overview and front end

Figure 5.10 shows the steps in converting from StreamIt to StarSs. First, comments are
removed using the C preprocessor1, and the StreamIt program is parsed, using a parser
based on pycparser [Ben], to produce an AST (Abstract Syntax Tree).

The second step simplifies the AST. Its most important job is to deal with inlined filters,
pipelines and splitjoins. These are written lexically inside their parent, and are most easily
dealt with by moving them outside their parent, to the top level, and giving them a name
such as Anonymous 5. The free variables are collected together to become parameters.

The third step builds the stream graph and finds out, for each filter, the values of its pa-
rameters and its static push, pop and peek rates. For the code in Figure 5.14, the parameters
for the lowpass filters are rate, cutoff, taps and decimation. These values affect the push and
pop rates, which are used to calculate the multiplicities, needed for static partitioning and
scheduling. Knowing the values of all parameters ahead of time allows the main function to
simply call the initialisation and work functions, without first having to follow the original
hierarchical code to find out their parameters.

The tool constructs the stream graph and finds the parameter values by creating a C++
build program. The original StreamIt program is converted to C++, discarding the work and
initialisation functions, keeping only the bits that build the stream graph, and calling C++
methods to do so. It prints to stdout a representation of the graph as shown in Figure 5.11.

1It is convenient for our benchmarks to support the full C preprocessor including -D· · · on the command-
line, but the C preprocessor is not part of the StreamIt language.

109

SupportTools/StreamItToStarss/str2sss-stages.eps

5. SUPPORT TOOLS

Type Input Output Pop Push P
ee

k
D

ep
th

Name and parameters
1 PIPELINE [void void NA NA NA > Simpli f iedFMRadio5
2 FILTER void f loat 0 1 0 >+ Fi l eR ead e r f l o a t ” input . in ”
3 SPLITJOIN[f l oat f loat NA NA NA >+ BPFCore Dupl i cate
4 FILTER f l oat f loat 1 1 1 >++ LowPassFi l ter 250000000.000000 55.000000 128 0
5 FILTER f l oat f loat 1 1 1 >++ LowPassFi l ter 250000000.000000 97.998856 128 0
6 SPLITJOIN] >+ RoundRobin 1 1
7 FILTER f l oat f loat 2 1 2 >+ Subtrac t e r
8 FILTER f l oat void 1 0 0 >+ F i l eWr i t e r f l o a t ”output . out ”
9 PIPELINE]

10 Fin i shed

Figure 5.11: Output from the build program

An alternative would be to analyse the code statically, but the approach described here was
easier to implement.

In the output from the build program, the first field is whether the component is a filter,
pipeline, or splitjoin. Since it is a linear representation of a hierarchy, each pipeline and
splitjoin needs lines to open and close it, represented by the opening and closing square
brackets. The second and third fields are the types of the data on the input and output
FIFOs. These are usually already known because they are given in the source code, but not
always—some inlined stream actors have their types deduced from the context, and this is
done by the build program.

If the component is a filter, the next three fields give the number of elements popped,
pushed, and peeked for each call to the work function. In StreamIt terminology, the peek
count includes the number popped—since the tool doesn’t support peeking forward, the pop
and peek counts should be equal. The depth field is included only to help debugging, as
it gives a visual representation of the depth in the hierarchy. The remaining fields are the
function name and the values of its parameters.

After reading in the output from the build program, the next step is to perform the high-
level transformations described in Section 5.3.4. Following this, the final phase calculates the
filter multiplicities, and generates the StarSs source code as described in the next section.

Generate StarSs source

Figure 5.12 shows how a StreamIt work function may be converted to a StarSs task. The
actual code generated depends on the context in which the filter is being used. The code on
the right is for a simple case, and is the unmodified output from str2oss. Since the filter’s
push and pop rates are known by the caller, in fact at compile time, the items to be popped
and pushed are passed, as function arguments in and out, in arrays of known sizes. The push,
pop, and peek1 operations inside the function are translated to array accesses and pointer
arithmetic.

The main program uses arrays to hold the elements in the FIFOs. Figure 5.13 shows
parts of the stream graphs for three StreamIt programs, with each subfigure indicating in
bold a single array. Subfigure (a) is the simplest case: a FIFO straight from one filter, A, to
another filter, B. The main program will allocate a block of memory large enough to contain

1The tool does not support peeking outside the input array, but it does support the peek operator, which
is just an array subscript, so long as it is only used to read data that will be popped.

110

5.3 StreamIt to OmpSs conversion

1 int−>int f i l t e r Example
2 {
3 work pop 20 push 10
4 {
5 for (int j =0; j <10; j++)
6 {
7 int x = peek (0) + peek (1) ;
8 pop () ;
9 pop () ;

10 push (x) ;
11 }
12 }
13 }

16 #pragma c s s task input (in [2 0]) output (out [1 0])
17 void Example (const int * r e s t r i c t in , int * r e s t r i c t out)
18 {
19 for (int j = 0 ; j < 10 ; j++)
20 {
21 int x = (in [0] + in [1]) ;
22 * in++;
23 * in++;
24 *out++ = x ;
25 }
26
27 }

(a) StreamIt filter (b) Corresponding StarSs function

Figure 5.12: Translation of an example StreamIt function

A

B

split

A1 A2 Ak

join

B

split

A1 A2 Aj

join

split

B1 B2 Bk

join

(a) FIFO inside a
pipeline

(b) Multiple-writer FIFO from
a splitjoin

(c) Multiple-writer
multiple-reader FIFO

Figure 5.13: Various FIFOs

all the data passed in a steady state iteration, and call functions similar to the function in
Figure 5.12(b), one or more times per iteration, to write and read the array. A efficient serial
implementation would share one array among several streams, if their data weren’t live at
the same time, but this is not done by str2oss.

There is a complication, which is caused by a limitation of the OmpSs runtime. OmpSs
doesn’t support dependencies via input and output arrays that partially overlap. A task’s
input array must coincide exactly with the output array of the task that generated the data,
and it must be disjoint with every other output—similarly for other kinds of dependency.
This is a reasonable limitation, because the runtime finds the dependency using an associative
map from the block’s start address to an internal data structure. Any more complicated
mechanism would likely require greater runtime overhead.

The number of items pushed by the producer task may be different from the number
popped by the consumer task. When they are different, a natural implementation would
have them communicating via partially overlapping arrays, which would not work.

The approach taken by str2oss is to split the FIFO into segments of length the greatest
common divisor of the push and pop rates. Rather than having a single output argument, out,
to contain all the elements it will push, the producer gets one output argument per segment;
similarly for the consumer. The data is manipulated in temporary arrays and gathered from
or scattered to the arguments using memcpy. This approach sometimes results in an excessive

111

SupportTools/StreamItToStarss/fifo-in-pipeline.eps
SupportTools/StreamItToStarss/fifo-out-splitjoin.eps
SupportTools/StreamItToStarss/fifo-sj-to-sj.eps

5. SUPPORT TOOLS

number of function arguments, often solved with a careful choice of unrolling factor for one
or both filters. This is the unrolling transformation described in Section 5.3.4. Although
unrolling solves the problem on this stream, it may cause problems elsewhere, particularly
if the unrolled filter is connected on the other side to a splitjoin. This behaviour is rather
unintelligent, but it is easy to understand, and easy for the high-level phase to model.

Figure 5.13(b) shows a FIFO that is the output of a round-robin join. The str2oss tool
does not create a task just to do the job of the joiner. In some cases, this would be the
right thing to do—see below, but, again, it is a high-level transformation. The elements
in the array are ordered, in memory, exactly in the order they will be popped by B. The
main program calls kernels A1 through Ak, having them write their contributions directly
into this array. If a single firing of any of the producers has to write output that is not
one contiguous section, then its output argument must be split into several arguments. The
function arguments may need to be split further to deal with the limitation of OmpSs that
was handled above. Conversely, the input to a splitjoin is handled in a similar way: it is an
array with multiple readers instead of multiple writers. Figure 5.13(c) is an example where a
stream leaves one splitjoin and enters another, so the array has multiple writers and multiple
readers.

More complicated examples are handled by inserting an identity kernel, which does noth-
ing except pass on data. For instance, if A1 in Figure 5.13(c) were not a kernel, but a splitjoin,
an identity kernel would be inserted after its join. The reason is that it is genuinely harder
to support nested splitjoins in the manner described above. In a single splitjoin, described
in the previous paragraph, each filter writes a subset of the elements of its output array fol-
lowing a simple pattern: first skip so many elements; then for the rest of the array, alternate
between writing a fixed number of elements and skipping a fixed number of elements. A
filter inside a nested splitjoin, if not isolated from the outer one, could have to follow a more
complicated pattern.

5.3.2 Example: simplified FM Radio

This section illustrates the conversion process using the example from Figure 1.10, a sim-
plified version of part of the StreamIt fm benchmark. Since str2oss doesn’t support peeking
forward in streams, the program has to be changed to work without peeking. This can often
be done in the way shown in Figure 5.14, by adding state that remembers previous input: a
history buffer. This program is not quite the same as the original, because there are 127 new
samples, all zeroes, at the beginning of the output. There is also a performance overhead
due to shifting samples in the history buffer, but this overhead can be reduced using a more
careful unrolled implementation.

Figures 5.15 and 5.16 show the output from str2oss. The program as it stands is not
very efficient, since the tasks are too small. They would normally be unrolled using the
mechanism in Section 5.3.4.

The state on lines 16 and 17 of the StreamIt source code is combined into the structure
defined on lines 7 through 11, and initialised by the init function on lines 13 through 27. The
low pass filter is defined in lines 29 through 41. The subtracter, defined in lines 43 through
53, has its input arrays split in two, since it follows a two-way round robin join.

112

5.3 StreamIt to OmpSs conversion

1 /*
2 * Copy r i gh t 2001 Massachu se t t s I n s t i t u t e o f Techno logy
3 *
4 * Permiss ion to use , copy , modify , d i s t r i b u t e , and s e l l t h i s s o f tw a re and i t s
5 * documentat ion f o r any purpose i s he r eby g ran t ed w i t hou t fee , p rov ided t h a t
6 * t h e above c o p y r i g h t n o t i c e appear in a l l c o p i e s and t h a t bo t h t h a t
7 * c o p y r i g h t n o t i c e and t h i s pe rm is s ion no t i c e appear in s up po r t i n g
8 * documentation , and t h a t t he name o f M. I .T. not be used in a d v e r t i s i n g or
9 * p u b l i c i t y p e r t a i n i n g t o d i s t r i b u t i o n o f t he s o f tw a re w i t hou t s p e c i f i c ,

10 * wr i t t e n p r i o r pe rm is s ion . M. I .T. makes no r e p r e s e n t a t i o n s about t he
11 * s u i t a b i l i t y o f t h i s s o f t wa r e f o r any purpose . I t i s p rov ided ” as i s ”
12 * wi t h ou t e x p r e s s or imp l i e d warranty .
13 */
14
15 f loat−>f l oat f i l t e r LowPassFi l ter (f l oat rate , f l oat cu to f f , int taps , int decimat ion) {
16 f l oat [taps] c o e f f ;
17 f l oat [taps] h i s t o r y ;
18 i n i t {
19 int i ;
20 f l oat m = taps − 1 ;
21 f l oat w = 2 * pi * c u t o f f / rat e ;
22 for (i = 0 ; i < taps ; i++) {
23 h i s t o r y [i] = 0 . 0 ;
24 i f (i − m/2 == 0)
25 c o e f f [i] = w/ pi ;
26 else

27 c o e f f [i] = s in (w*(i−m/2)) / p i / (i−m/2) *
28 (0 . 54 − 0.46 * cos (2* pi * i /m)) ;
29 }
30 }
31 work pop 1+decimat ion push 1 {
32 f l oat sum = 0;
33 int pop count = 1+decimat ion ;
34 // Put 1+dec ima t ion new samples i n t o t he h i s t o r y
35 for (int i = 0 ; i < taps − pop count ; i++)
36 h i s t o r y [i] = h i s t o r y [i+pop count] ;
37 for (int i = 0 ; i < pop count ; i++)
38 h i s t o r y [taps−pop count+i] = pop () ;
39 for (int i = 0 ; i < taps ; i++)
40 sum += h i s t o r y [i] * c o e f f [i] ;
41 push (sum) ;
42 }
43 }
44
45 f loat−>f l oat s p l i t j o i n BPFCore (f l oat rate , f l oat low , f l oat high , int taps) {
46 s p l i t dup l i c a t e ;
47 add LowPassFi l ter (rate , low , taps , 0) ;
48 add LowPassFi l ter (rate , high , taps , 0) ;
49 j o i n roundrobin ;
50 }
51
52 f loat−>f l oat f i l t e r Subt rac t e r {
53 work pop 2 push 1 {
54 push (peek (1) − peek (0)) ;
55 pop () ; pop () ;
56 }
57 }
58
59 void−>void p i p e l i n e Simpli f iedFMRadio5 {
60 f l oat samplingRate = 250000000; // 250 MHz
61 f l oat cutof fFrequency = 108000000; // 108 MHz
62 f l oat low = 55 . 0 ;
63 f l oat high = 97 . 998856 ;
64 int taps = 128;
65
66 add FileReader <f loat >(” input . in ”) ;
67 add BPFCore (samplingRate , low , high , taps) ;
68 add Subt rac t e r () ;
69 add Fi l eWri ter <f loat >(”output . out ”) ;
70 }

Figure 5.14: Non-peek version of the example StreamIt 2.1 program in Figure 1.10

113

5. SUPPORT TOOLS

1 #include <s td i o . h>

2 #include <s t d l i b . h>

3 #include <s t r i n g . h>

4 #include <math . h>

5 #define pi 3.14159265
6
7 typedef struct

8 {
9 f l oat c o e f f [1 2 8] ;

10 f l oat h i s t o r y [1 2 8] ;
11 } va r s LowPassF i l t e r 0 t ;
12
13 void i n i t LowPas sF i l t e r 0 (va r s LowPas sF i l t e r 0 t * vars , f l oat rate , f l oat cu to f f , int taps , int

decimat ion)
14 {
15 int i ;
16 f l oat m = (128 − 1) ;
17 f l oat w = (((2 * pi) * c u t o f f) / rat e) ;
18 for (i = 0 ; i < 128; i++)
19 {
20 vars−>h i s t o r y [i] = 0 . 0 ;
21 i f (((i − (m / 2)) == 0))
22 vars−>c o e f f [i] = w / pi ;
23 else

24 vars−>c o e f f [i] = ((s i n (w * (i − (m / 2))) / p i) / (i − (m / 2))) * (0 .5 4 − (0 . 46 * cos
(((2 * pi) * i) / m))) ;

25 }
26
27 }
28
29 #pragma c s s task input (in [(1 + decimat ion)]) output (out [1]) input (rate , cu to f f , taps , dec imat ion)

inout (vars)
30 void LowPassFi l ter 0 (const f loat * r e s t r i c t in , f l oat * r e s t r i c t out , f l oat rate , f l oat cu to f f , int

taps , int decimation , va r s LowPas sF i l t e r 0 t * r e s t r i c t vars)
31 {
32 f l oat sum = 0 ;
33 int pop count = (1 + decimat ion) ;
34 for (int i = 0 ; i < (taps − pop count) ; i++)
35 vars−>h i s t o r y [i] = vars−>h i s t o r y [(i + pop count)] ;
36 for (int i = 0 ; i < pop count ; i++)
37 vars−>h i s t o r y [((taps − pop count) + i)] = * in++;
38 for (int i = 0 ; i < taps ; i++)
39 sum += vars−>h i s t o r y [i] * vars−>c o e f f [i] ;
40 *out++ = sum ;
41 }
42
43 #pragma c s s task input (i n 0 [2 / 2] , i n 1 [2 / 2]) output (out [1])
44 void Subt ra c t e r 2 1 (const f loat * r e s t r i c t in 0 , const f loat * r e s t r i c t in 1 , f l oat * r e s t r i c t out)
45 {
46 f l oat i n a r r ay [2] ;
47 memcpy(in a r r ay + 0*(2/2) , in 0 , s i zeo f (f l oat [2 / 2])) ;
48 memcpy(in a r r ay + 1*(2/2) , in 1 , s i zeo f (f l oat [2 / 2])) ;
49 f l oat * in = in a r ray ;
50 *out++ = in [1] − in [0] ;
51 * in++;
52 * in++;
53 }
54
55 #pragma c s s task output (out [1]) inout (s t a t e) input (f i l ename)
56 void F i l eRe ad e r f l o a t (f l oat * r e s t r i c t out , FILE * s tat e , const char * f i l ename)
57 {
58 f r ead (out , s i zeo f (f l oat) , 1 , s t a t e) ;
59 }
60
61 #pragma c s s task input (in [1]) inout (s t a t e) input (f i l ename)
62 void F i l eWr i t e r f l o a t (const f loat * r e s t r i c t in , FILE * s tat e , const char * f i l ename)
63 {
64 fw r i t e (in , s i zeo f (f l oat) , 1 , s t a t e) ;
65 }
66
67 int main (int argc , char ** argv)
68 {
69 int i t e r ;
70 f l oat ou t F i l eRead e r f l o a t [1] ;
71 f l oat out BPFCore [2] ;
72 f l oat out Subt rac t e r [1] ;
73 FILE * s t a t e F i l eR e ad e r f l o a t = fopen (” input . in ” , ”rw”) ;
74 i f (! s t a t e F i l eR e ad e r f l o a t)
75 {
76 f p r i n t f (s tder r , ”Cannot open f i l e ’ input . in ’ f o r read ing \n”) ;
77 ex i t (1) ;
78 }

Figure 5.15: Translated code exactly as generated by str2oss: part 1

114

5.3 StreamIt to OmpSs conversion

79 FILE * s t a t e F i l eW r i t e r f l o a t = fopen (”output . out ” , ”wb”) ;
80 i f (! s t a t e F i l eW r i t e r f l o a t)
81 {
82 f p r i n t f (s tder r , ”Cannot open f i l e ’ output . out ’ f o r wr i t i ng \n”) ;
83 ex i t (1) ;
84 }
85 va r s LowPassF i l t e r 0 t var s LowPassF i l t e r 0 ;
86 va r s LowPassF i l t e r 0 t var s LowPassF i l t e r 1 ;
87
88 i n i t LowPas sF i l t e r 0 (&vars LowPassFi l te r 0 , 250000000 . 000000 , 55 . 000000 , 128 , 0) ;
89 i n i t LowPas sF i l t e r 0 (&vars LowPassFi l te r 1 , 250000000 . 000000 , 97 . 998856 , 128 , 0) ;
90
91 #pragma c s s s t a r t
92 for (i t e r =0; i t e r <10; i t e r++)
93 {
94 F i l eRe ad e r f l o a t (ou t F i l eReade r f l o a t , s t a t e F i l eR ead e r f l o a t , ” input . in ”) ;
95 LowPassFi l ter 0 (ou t F i l eReade r f l o a t , out BPFCore , 250000000.000000 , 55.000000 , 128 , 0 , &

var s LowPassF i l t e r 0) ;
96 LowPassFi l ter 0 (ou t F i l eReade r f l o a t , (f l oat *) out BPFCore + 1 , 250000000.000000 ,

97.998856 , 128 , 0 , &var s LowPassF i l t e r 1) ;
97 Sub t r a c t e r 2 1 (out BPFCore , (f l oat *) out BPFCore + 1 , ou t Subt rac t e r) ;
98 F i l eW r i t e r f l o a t (out Subtracter , s t a t e F i l eW r i t e r f l o a t , ” output . out ”) ;
99 }

100 #pragma c s s f i n i s h
101 f c l o s e (s t a t e F i l eR e ad e r f l o a t) ;
102 f c l o s e (s t a t e F i l eW r i t e r f l o a t) ;
103 return 0 ;
104 }

Figure 5.16: Translated code exactly as generated by str2oss: part 2

5.3.3 Current limitations

The initial implementation of str2oss does not support peeking, feedback loops, variable
rate kernels, or teleport messaging. To support peeking, the tool must allocate additional
buffering, since stream elements are live for a longer time. It must also modify task creation
order and add a prologue before the main loop, since peeking forward in the stream modifies
the schedule.

There are three ways to implement the additional buffering. The first way is to implement
a history buffer inside the task, which requires inout state. This transformation was done
manually in Section 5.3.2, and it serialises the filter. The second way is to split the filter in
two: the first half updates the history, and is therefore serialised. The appropriate data is
passed to the second half of the filter, which does the work, and need not be serialised (unless
there is some other inout state). The third way is to allocate and manage the additional
buffering in the main function, and pass the appropriate data to the tasks using additional
function arguments.

The prologue and main loop can be created using a technique such as phased schedul-
ing [KTA03], which takes account of peeking forward in the streams.

Feedback loops present no special problems. Since feedback loops were not used in the
StreamIt benchmarks, there was no requirement to implement support for them.

Variable rate kernels are hard to support without changing the StarSs programming
model. In StarSs, the dependency graph must be constructed by the main function, which
requires knowing the number of elements pushed or popped by every kernel’s work function.
When a kernel has variable rates, the main function must therefore synchronise on every
one of its tasks. This will likely introduce an unacceptably large overhead and constrain
parallelism.

Teleport messaging allows occasional messages to be sent between filters, outside the
normal stream flow. Messages are asynchronous method calls from an upstream (sending)

115

5. SUPPORT TOOLS

1 UNROLL 2000 PolarToRectangular
2 UNROLL 2000 FloatVoid
3 UNROLL 100 .*
4 JOIN 100 Fi l te rBank 0
5 SPLIT 1500 Anonymous 0 0
6 JOIN 2000 Anonymous 0 0
7 SPLIT 100 Anonymous 2 0
8 JOIN 100 Anonymous 2 0

Figure 5.17: Example str2oss control file for Vocoder

filter to a downstream (receiving) filter, which have guaranteed upper and lower bounds on
latency. Latency is measured, not using some notion of global time, but by reference to a
pull schedule [CAG06].

Teleport messaging constrains dynamic scheduling [TKS+05]. If an upstream filter might
send a message with fixed latency; i.e. the upper and lower bounds are equal, then each
downstream filter task cannot start executing until the upstream task that may have sent
it a message has finished executing. These dependencies must always be added to the
dependency graph, even in the common case where there is no message.1 To add these
dependencies, the downstream task must be created after the upstream task, which might
not otherwise have been the case, especially if the minimum latency is large.

In addition to the major shortcomings described above, the tool requires some small
changes to the StreamIt source code. Some of these relate to differences between StreamIt’s
Java-derived syntax and that of C. Specifically, str2oss requires a semicolon after a typedef,
and it requires the keyword struct before a struct name. Numbers beginning with a zero are
treated as octal, whereas the mpeg2 benchmark for instance expects them to be decimal.
These limitations can be addressed by modifying the parser.

Unlike StreamIt, variables are not automatically initialised to zero. There is no support
for nesting ordinary C functions inside components; the programmer just needs to move them
outside, adding arguments as necessary. The tool generates work functions with arguments
with names like in, out, and state. These can be, and sometimes are, the same as local
variables, causing problems.

The tool has incomplete support for StreamIt array declarations: the StreamIt decla-
ration int[N] permutation is similar to the C declaration int permutation[N]. For this
reason, the parameters to filters must be scalars. Two benchmarks have arrays passed as
parameters: Serpent and fm. The workaround for Serpent is to change the second param-
eter from an array to a Boolean, which selects between IP and FP in the static data. The
workaround for fm is even simpler: the work function depends on just one element of the
gains array. This limitation can be addressed by supporting StreamIt array declarations
properly.

1Since messages are assumed to be sent infrequently, greater parallelism may be exploitable if OmpSs
were extended to use speculation.

116

5.3 StreamIt to OmpSs conversion

5.3.4 High level transformations

Unrolling The str2oss tool has limited support for the unrolling transformation, but only
under the direct control of the user or external tool. The unrolling transformation is driven
using a control file, such as that shown in Figure 5.17. Each line in this file is a directive to
str2oss, which has a directive type, unrolling factor, and a regular expression. The regular
expression matches the task function or task function call.

An UNROLL directive unrolls a task function. For example, the first line in Figure 5.17
unrolls the PolarToRectangular function by a factor of 2 000. This is done by inserting a
for loop around the body of its work function, and multiplying the push and pop rates by
this number. The filter unrolling pass happens after parsing the StreamIt code, but before
creating and running the build program. Line 3 unrolls every function not matched by the
first two lines by a factor of 100.

The JOIN and SPLIT directives fix the problem illustrated in Figure 5.18. Figure 5.18(a)
shows part of the source code for the des benchmark, slightly simplified. As can be seen in
the diagram of Figure 5.18(b), the outputs of f and Id are interleaved by a round-robin join.
The code generation method described in Section 5.3.1 requires f to write the even elements
into the array in the right places, and Id to similarly write the odd elements. For StarSs,
since each argument must be a single block of contiguous memory, this requires the functions
to both have, for their outputs, 32 function arguments.1

The solution is to transform the source code into that shown in Figure 5.18(c), resulting
in the stream graph in Figure 5.18(d). The round-robin join has been changed from (1, 1) to
(32, 32), and a permute filter has been inserted to put the stream back into the right order.
A single call to f writes one block of contiguous memory, so the function has a single output
array, and similarly for Id. This transformation is performed by the directive “JOIN 32
Body 1”. The SPLIT directive works similarly for splits. The regular expression is matched
against the specific instance of the splitjoin, hence the suffix 1.

Figure 5.2 gives statistics for conversion of the StreamIt benchmarks. Subfigure (a) shows
the statistics for the benchmarks, as used in Chapter 4, with manually chosen high level
transformations. The only benchmark with an excessive number of function arguments is
MPEGdecoder. This benchmark contains a round-robin split with arguments 384, 16, and 3.
After the high-level transformations, the producer pushes 40 300 elements at a time into the
split, which has arguments 38 400, 1 600, and 300. This FIFO must be split into segments, as
described in Section 5.3.1, to avoid partially overlapping arrays. The current implementation
requires all segments to be the same length. The segment is the greatest common divisor,
which is 100, so the producer has 403 output segments. There is one additional function
argument, which is a parameter to the filter. The solution is to fix this one benchmark by
hand.

Figure 5.2(b) shows the same statistics when all filters are unrolled by a factor of 100.
Some functions have an absurd number of function arguments, up to 45 thousand, for the rea-
sons explained earlier in this section. For comparison, Figure 5.2(c) gives the same statistics
for the StreamIt benchmarks with no high-level transformations at all.

1This problem is alleviated by region support in SMPSs, which is not implemented in the Nanos++
runtime.

117

5. SUPPORT TOOLS

Kernel fusion Kernel fusion is not supported, but it could be implemented by modifying
the graph representation and work functions immediately following unrolling. The transfor-
mation should be driven by a convex partition, determined, as above, either by the user or
by an external tool, perhaps using the heuristic in Section 3.2. The transformation should
contract the kernels to be fused into a single vertex. Any internal streams will disappear from
the stream graph, but will become temporary buffering inside the task. The multiplicity of
the task should be the greatest common divisor of the multiplicities of its kernels.

118

5.3 StreamIt to OmpSs conversion

1 int−>int f i l t e r f
2 {
3 work pop 32 push 32
4 {
5 // Body o f work not impor t an t
6 for (int j =0; j <32; j++)
7 push (pop ()) ;
8 }
9 }

10
11 int−>int s p l i t j o i n Body
12 {
13 s p l i t roundrobin (32 , 32) ;
14 add f () ;
15 add Iden t i ty<int >() ;
16 j o i n roundrobin (1 , 1) ;
17 }
18
19 void−>void p i p e l i n e RoundRobin 32 32
20 {
21 add FileReader <int>(” r r . in ”) ;
22 add Body () ;
23 add Fi l eWri ter <int>(” r r . out ”) ;
24 }

split

64

f

32

32

32

1

Id

32

32

32

1
join

2

(a) Original StreamIt source
(b) Stream graph, with push and pop

rates

42 int−>int f i l t e r f
43 {
44 work pop 32 push 32
45 {
46 // Body o f work not impor t an t
47 for (int j =0; j <32; j++)
48 push (pop ()) ;
49 }
50 }
51
52 int−>int p i p e l i n e Body
53 {
54 add s p l i t j o i n
55 {
56 s p l i t roundrobin (32 , 32) ;
57 add f () ;
58 add Iden t i ty<int >() ;
59 j o i n roundrobin (32 , 32) ;
60 }
61 add Permute (32 , 1) ;
62 }
63
64 void−>void p i p e l i n e RoundRobin 32 32
65 {
66 add FileReader <int>(” r r . in ”) ;
67 add Body () ;
68 add Fi l eWri ter<int>(” r r . out ”) ;
69 }

split

64

f

32

32

32

32

Id

32

32

32

32
join

64

64

Permute

64

(c) Transformed StreamIt source
(d) Stream graph, with push and pop

rates

Figure 5.18: An example where str2oss generates a function with too many arguments

119

SupportTools/StreamItToStarss/roundrobin_32_32.eps
SupportTools/StreamItToStarss/roundrobin_32_32_fixed.eps

5. SUPPORT TOOLS

Benchmark Maximum
mult.

Maximum
#args

Average
#args

#function
fcalls

Tasks
per iter.

Data
bytes

BeamFormer1 2 13 6.27 55 79 68800
BitonicSort 2 5 3.17 58 60 99200
ChannelVocoder 2 18 6.68 57 58 746400
DCT 1 17 5.15 40 40 921600
DES 3 7 3.40 57 69 1177600
FFT 128 5 4.71 17 384 3276800
FilterBank 8 11 6.63 76 426 243200
FMRadio 1 8 4.15 48 48 27200
MPEGdecoder 6 404 26.85 40 180 3450400
Serpent 4 36 3.70 408 432 6976000
tde 480 19 5.72 29 2869 20160000
VocoderTopLevel 20 30 4.66 120 248 342800

(a) As used in Chapter 4, with manually chosen transformations

Benchmark Maximum
mult.

Maximum
#args

Average
#args

#function
fcalls

Tasks
per iter.

Data
bytes

BeamFormer1 2 1204 134.08 53 77 57600
BitonicSort2 1 1200 411.89 36 36 41600
ChannelVocoder7 50 3200 143.16 55 1721 733200
DCT2 256 3202 2330.75 36 546 512000
DES2 48 6432 1508.60 45 357 870400
FFT5 128 5 4.71 17 384 3276800
FilterBank6 8 802 78.18 67 354 166400
FMRadio5 1 602 91.44 41 41 20000
MPEGdecoder 384 45002 6834.81 31 907 1880400
Serpent 128 13600 1401.04 358 2021 3955200
tde 480 19 5.72 29 2869 20160000
VocoderTopLevel 20 4000 306.70 106 249 209600

(b) Unrolled only, all filters by factor of 100

Benchmark Maximum
mult.

Maximum
#args

Average
#args

#function
fcalls

Tasks
per iter.

Data
bytes

BeamFormer1 2 16 7.06 53 77 576
BitonicSort2 1 12 4.89 36 36 416
ChannelVocoder7 50 100 24.36 55 1721 7332
DCT2 256 258 44.67 36 546 5120
DES2 48 96 37.67 45 357 8704
FFT5 128 5 4.71 17 384 32768
FilterBank6 8 11 7.25 67 354 1664
FMRadio5 1 8 4.51 41 41 200
MPEGdecoder 384 452 74.06 31 907 18804
Serpent 128 160 15.59 358 2021 39552
tde 480 19 5.72 29 2869 201600
VocoderTopLevel 20 45 5.96 106 249 2096

(c) Not unrolled

Table 5.2: Translation statistics for StreamIt benchmarks

120

Chapter 6

Conclusions

This thesis has developed several new compiler and run-time techniques for stream program-
ming. In conclusion, the main contributions are as follows:

1. The Abstract Streaming Machine (ASM), a flexible machine description and
coarse-grain simulator for a statically scheduled stream compiler. The ASM machine
model uses a bipartite graph representation to describe the target system to the com-
piler. The coarse-grain simulator models the program’s dynamic behaviour.

[CRM+07] Paul Carpenter, David Rodenas, Xavier Martorell, Alejandro Ramirez, and Eduard Ayg-

uadé. A streaming machine description and programming model. Proc. of the Interna-

tional Symposium on Systems, Architectures, Modeling and Simulation, Samos, Greece,

July 16–19, 2007.1

[ACO08] ACOTES. IST ACOTES Project Deliverable D2.2 Report on Streaming Programming
Model and Abstract Streaming Machine Description Final Version. 2008.

[CRA09b] Paul M. Carpenter, Alex Ramirez, and Eduard Ayguade. The Abstract Streaming Ma-
chine: Compile-Time Performance Modelling of Stream Programs on Heterogeneous Mul-
tiprocessors. In SAMOS Workshop 2009, pages 12–13. Best paper award.

[CRA11] Paul M. Carpenter, Alex Ramirez, and Eduard Ayguade. The Abstract Streaming Ma-
chine: Compile-Time Performance Modelling of Stream Programs on Heterogeneous Mul-
tiprocessors. Transactions on HiPEAC, 5(3).

[M+11] Harm Munk et al. ACOTES Project: Advanced Compiler Technologies for Embedded
Streaming. International Journal of Parallel Programming, 39:397–450, 20111.

2. A new partitioning heuristic for stream programs, which balances the load across
the target, taking account of the processors and communication links. A good parti-
tioning algorithm is crucial if the compiler is to produce efficient code. This algorithm
also considers its effect on downstream passes, specifically software pipelining and
buffer allocation, using a convexity constraint to control pipeline length. It uses a new
formulation of connectivity to model the compiler’s ability to fuse kernels.

[CRA09a] Paul M. Carpenter, Alex Ramirez, and Eduard Ayguade. Mapping Stream Programs onto
Heterogeneous Multiprocessor Systems. In CASES ’09: Proceedings of the 2009 Inter-

1These papers also contain material that is not a contribution of this thesis.

121

6. CONCLUSIONS

national Conference on Compilers, Architectures, and Synthesis for Embedded Systems,
pages 57–66, 2009.

3. Two static queue sizing algorithms for stream programs, which determine the sizes
of the buffers used to implement streams. The queue sizing problem is important when
memory is distributed, especially when local stores are small. The algorithm adjusts
the sizes of the buffers, subject to memory capacities, in order to cover latency and
variability in computation costs.

[CRA10b] Paul M. Carpenter, Alex Ramirez, and Eduard Ayguade. Buffer Sizing for Self-timed
Stream Programs on Heterogeneous Distributed Memory Multiprocessors. In High Per-
formance Embedded Architectures and Compilers, 5th International Conference, HiPEAC
2010, pages 96–110.

4. Two new low-complexity adaptive dynamic scheduling algorithms for stream-like
programs. The apriority scheduler is specific to one-dimensional stream programs, and
it requires information from the compiler. The gpriority scheduler does not need such
information, and it is more general.

5. StarssCheck, a debugging tool for StarSs. StarssCheck runs the program under
Valgrind, using a special analysis tool, and generates a warning whenever the program’s
behaviour contradicts the StarSs pragma annotations. Many of the errors found by
StarssCheck would otherwise be difficult to diagnose, since they would cause race
conditions or exceptions deep inside the runtime system.

[CRA10a] Paul M. Carpenter, Alex Ramirez, and Eduard Ayguade. Starsscheck: A Tool to Find
Errors in Task-Based Parallel Programs. Euro-Par 2010–Parallel Processing, pages 2–13,
2010.

122

Glossary

API Application Programming Interface.

ASM Abstract Streaming Machine.

AST Abstract Syntax Tree.

BLAS Basic Linear Algebra Subprograms.

Cell B.E. Cell Broadband Engine.

CPU Central Processing Unit.

DAG Directed Acyclic Graph.

DCT Discrete Cosine Transform.

DMA Direct Memory Access.

DSL Domain-specific Language.

DSP Digital Signal Processor.

FFT Fast Fourier Transform.

FIFO First In First Out.

GCC GNU Compiler Collection.

GIF Graphics Interchange Format.

GPU Graphics Processing Unit.

HD High Definition.

ILP Integer Linear Programming.

IO Input/Output.

ISA Instruction Set Architecture.

KPN Kahn Process Network.

LAPACK Linear Algebra Package.

LIFO Last In First Out.

LS Local Store.

Mercurium Source-to-source compiler used by
OmpSs.

Nanos++ Runtime library for asynchronous
task parallelism, which supports
multiple programming languages:
StarSs, OpenMP, and Chapel.

OmpSs An implementation of StarSs, which
also supports the OpenMP stan-
dard. The OmpSs compiler ac-
cepts both the StarSs syntax and
the newer OmpSs syntax. The
OmpSs run-time system is built on
Nanos++.

OS Operating System.

PDG Partial Dependency Graph.

POSIX Portable Operating System Inter-
face for Unix.

PPE Power Processing Element.

SDF Synchronous Data Flow.

SGMS Stream Graph Modulo Scheduling.

SIMD Single Instruction Multiple Data.

SMP Symmetric Multiprocessor.

SPE Synergistic Processing Element.

SPM Stream Programming Model.

StarSs Star Superscalar, an extension of C
to support task-level parallelism.

123

124

Bibliography

[ACD74] T.L. Adam, K.M. Chandy, and JR Dickson. A comparison of list schedules for parallel
processing systems. Communications of the ACM, 17(12):690, 1974. 73, 74

[ACO] ACOTES IST-034869. http://www.hitech-projects.com/euprojects/ACOTES/. Ad-
vanced Compiler Technologies for Embedded Streaming. 8

[ACO08] ACOTES. IST ACOTES Project Deliverable D2.2 Report on Streaming Program-
ming Model and Abstract Streaming Machine Description Final Version, 2008. 6, 8,
16, 19, 121

[AG02] S.V. Adve and K. Gharachorloo. Shared memory consistency models: A tutorial.
Computer, 29(12):66–76, 2002. 3, 24

[AHSW62] J.P. Anderson, S.A. Hoffman, J. Shifman, and R.J. Williams. D825-a multiple-
computer system for command & control. In Proceedings of the December 4-6, 1962,
fall joint computer conference, pages 86–96. ACM, 1962. 1

[AK02] R. Allen and K. Kennedy. Optimizing compilers for modern architectures: a
dependence-based approach. Morgan Kaufmann Publishers, 2002. 3

[Amd67] G.M. Amdahl. Validity of the single processor approach to achieving large scale com-
puting capabilities. In Proceedings of the April 18-20, 1967, Spring Joint Computer
Conference, pages 483–485. ACM New York, NY, USA, 1967. 23

[App] Apple, Inc. http://developer.apple.com/library/mac/#featuredarticles/BlocksGCD/-
index.html. Introducing Blocks and Grand Central Dispatch. 5

[ASRV07] M. Alvarez, E. Salami, A. Ramirez, and M. Valero. HD-VideoBench. A Benchmark
for Evaluating High Definition Digital Video Applications. In IISWC 2007, pages
120–125, 2007. 89

[ATN10] Cédric Augonnet, Samuel Thibault, and Raymond Namyst. StarPU: a Runtime
System for Scheduling Tasks over Accelerator-Based Multicore Machines. Research
Report RR-7240, INRIA, 03 2010. 5

[ATNW09] C. Augonnet, S. Thibault, R. Namyst, and P.A. Wacrenier. StarPU: a unified platform
for task scheduling on heterogeneous multicore architectures. Euro-Par 2009 Parallel
Processing, pages 863–874, 2009. 5

[Bar08] Barcelona Supercomputing Center. SMP Superscalar (SMPSs) User’s Manual Ver-
sion 2.0, 2008. 10

[Bar09] Barcelona Supercomputing Center. Cell Superscalar (CellSs) User’s Manual Version
2.2, 2009. 10

125

[BDG+04] J. Balart, A. Duran, M. Gonzalez, X. Martorell, E. Ayguade, and J. Labarta. Nanos
Mercurium: a Research Compiler for OpenMP. In Proceedings of the European Work-
shop on OpenMP, volume 2004, 2004. 8, 99

[Ben] Eli Bendersky. http://code.google.com/p/pycparser/. pycparser. 109

[BGH+90] J.C. Bier, E.E. Goei, W.H. Ho, P.D. Lapsley, M.P. O’Reilly, G.C. Sih, and E.A. Lee.
Gabriel: a design environment for dsp. Micro, IEEE, 10(5):28–45, October 1990. 6

[BH01] T. Basten and J. Hoogerbrugge. Efficient execution of process networks. Communi-
cating Process Architectures, 2001. 61, 64, 67

[BJK+95] R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E. Leiserson, K.H. Randall, and
Y. Zhou. Cilk: An efficient multithreaded runtime system. ACM SigPlan Notices,
30(8):207–216, 1995. 5, 74

[BKSS02] M.D. Beynon, T. Kurc, A. Sussman, and J. Saltz. Optimizing execution of
component-based applications using group instances. Future Generation Computer
Systems, 18(4):435–448, 2002. 6

[BML96] S.S. Battacharyya, P.K. Murthy, and E.A. Lee. Software Synthesis from Dataflow
Graphs. Kluwer Academic Pub, 1996. 50

[Bow69] Sr. Bowdon, E.K. Priority assignment in a network of computers. Computers, IEEE
Transactions on, C-18(11):1021–1026, November 1969. 74

[BPBL06] P. Bellens, J.M. Perez, R.M. Badia, and J. Labarta. CellSs: a programming model
for the Cell BE architecture. In Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing. ACM New York, NY, USA, 2006. 5, 10

[Buc93] J.T. Buck. Scheduling dynamic dataflow graphs with bounded memory using the token
flow model. PhD thesis, University of California, 1993. 48, 58

[Buc03] I. Buck. Brook Spec v0. 2, 2003. 6, 67

[CAG06] CAG MIT. StreamIt Language Specification, Version 2.1, 2006. 6, 12, 16, 116

[CCG+00] J. Chaoui, K. Cyr, J.P. Giacalone, S. Gregorio, Y. Masse, Y. Muthusamy, T. Spits,
M. Budagavi, and J. Webb. OMAP: Enabling Multimedia Applications in Third
Generation (3G) Wireless Terminals. SWPA001, December, 2000. 2, 23

[CEP] CEPBA. http://www.cepba.upc.edu/paraver/. Paraver performance visualization
and analysis tool. 18, 29

[CEP01] CEPBA. Paraver Version 3.0 Parallel Program Visualization and Analysis tool:
Tracefile Description, 2001. 18

[CGT04] A. Cohen, S. Girbal, and O. Temam. A polyhedral approach to ease the composition
of program transformations. Lecture notes in computer science, pages 292–303, 2004.
8

[CHM95] C. Chekuri, W. Hasan, and R. Motwani. Scheduling problems in parallel query
optimization. In Proceedings of the fourteenth ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems, pages 255–265. ACM, 1995. 6

126

[CLC+09] Y. Choi, Y. Lin, N. Chong, S. Mahlke, and T. Mudge. Stream Compilation for
Real-Time Embedded Multicore Systems. In Proceedings of the 2009 International
Symposium on Code Generation and Optimization, pages 210–220. IEEE Computer
Society Washington, DC, USA, 2009. 46, 68

[CRA09a] Paul M. Carpenter, Alex Ramirez, and Eduard Ayguade. Mapping stream programs
onto heterogeneous multiprocessor systems. In CASES ’09: Proceedings of the 2009
international conference on Compilers, architecture, and synthesis for embedded sys-
tems, pages 57–66, 2009. 19, 38, 121

[CRA09b] Paul M. Carpenter, Alex Ramirez, and Eduard Ayguade. The Abstract Streaming
Machine: Compile-Time Performance Modelling of Stream Programs on Heteroge-
neous Multiprocessors. In SAMOS Workshop, pages 12–23. Springer, 2009. 19, 121

[CRA10a] P. Carpenter, A. Ramirez, and E. Ayguade. Starsscheck: A Tool to Find Errors in
Task-Based Parallel Programs. Euro-Par 2010-Parallel Processing, pages 2–13, 2010.
18, 20, 122

[CRA10b] Paul M. Carpenter, Alex Ramirez, and Eduard Ayguade. Buffer sizing for self-timed
stream programs on heterogeneous distributed memory multiprocessors. In High
Performance Embedded Architectures and Compilers, 5th International Conference,
HiPEAC 2010, pages 96–110. Springer, 2010. 9, 20, 39, 122

[CRA11] Paul M. Carpenter, Alex Ramirez, and Eduard Ayguade. The Abstract Streaming
Machine: Compile-Time Performance Modelling of Stream Programs on Heteroge-
neous Multiprocessors. Transactions on HiPEAC, 5(3), 2011. 19, 121

[CRDI05] T. Chen, R. Raghavan, J. Dale, and E. Iwata. Cell Broadband Engine Architecture
and its first implementation. IBM developerWorks, 2005. 10, 26

[CRM+07] Paul Carpenter, David Rodenas, Xavier Martorell, Alejandro Ramirez, and Eduard
Ayguadé. A streaming machine description and programming model. Proc. of the In-
ternational Symposium on Systems, Architectures, Modeling and Simulation, Samos,
Greece, July 16-19, 2007, 2007. 6, 8, 16, 17, 19, 121

[CSB+11] Hassan Chafi, Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee, Anand R.
Atreya, and Kunle Olukotun. A Domain-Specic Approach To Heterogeneous Par-
allelism. In 16th ACM SIGPLAN Annual Symposium on Principles and Practice of
Parallel Programming, San Antonio, TX, February 2011. 6

[DFA+09] A. Duran, R. Ferrer, E. Ayguadé, R.M. Badia, and J. Labarta. A proposal to extend
the openmp tasking model with dependent tasks. International Journal of Parallel
Programming, 37(3):292–305, 2009. 10

[DG98] A. Dasdan and RK Gupta. Faster maximum and minimum mean cycle algorithms
for system-performance analysis. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 17(10):889–899, 1998. 59

[DG08] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008. 3

[DYDS+10] M. Duranton, S. Yehia, B. De Sutter, K. De Bosschere, A. Cohen, B. Falsafi, G. Gay-
dadjiev, M. Katevenis, J. Maebe, H. Munk, et al. The HiPEAC vision. Network of
Excellence of High Performance and Embedded Architecture and Compilation, Tech.
Rep, 2010. 6

127

[EJL+03] J. Eker, J.W. Janneck, E.A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs,
and Y. Xiong. Taming heterogeneity–the Ptolemy approach. Proceedings of the IEEE,
91(1):127–144, 2003. 6, 65

[ERB+10] Yoav Etsion, Alex Ramirez, Rosa M. Badia, Eduard Ayguade, Jesus Labarta, and
Mateo Valero. Task superscalar: Using processors as functional units. In Hot Topics
in Parallelism (HotPar), Jun 2010. 10

[ERL90] Hesham El-Rewini and T. G. Lewis. Scheduling parallel program tasks onto arbitrary
target machines. J. Parallel Distrib. Comput., 9:138–153, June 1990. 73

[ESD02] M. Ekman, P. Stenström, and F. Dahlgren. TLB and snoop energy-reduction using
virtual caches in low-power chip-multiprocessors. In Proceedings of the 2002 interna-
tional symposium on Low power electronics and design, pages 243–246. ACM, 2002.
24

[FC07] G. Fursin and A. Cohen. Building a Practical Iterative Interactive Compiler. In 1st
Workshop on Statistical and Machine Learning Approaches Applied to Architectures
and Compilation (SMART’07), 2007. 8

[FHK+06] K. Fatahalian, D.R. Horn, T.J. Knight, L. Leem, M. Houston, J.Y. Park, M. Erez,
M. Ren, A. Aiken, W.J. Dally, et al. Sequoia: Programming the memory hierarchy. In
Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, page 83. ACM,
2006. 5

[FL99] M. Feng and CE Leiserson. Efficient detection of determinacy races in Cilk programs.
Theory of Computing Systems, 32(3):301–326, 1999. 106

[FLA10] FLAME Project. http://z.cs.utexas.edu/wiki/flame.wiki/FrontPage, 2010. 5

[FT87a] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in
improved network optimization algorithms. J. ACM, 34(3):596–615, 1987. 76

[FT87b] M.L. Fredman and R.E. Tarjan. Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of the ACM (JACM), 34(3):596–615, 1987. 61

[FVPF95] A. Fauth, J. Van Praet, and M. Freericks. Describing instruction set processors using
nML. In Proceedings of the 1995 European conference on Design and Test, page 503,
1995. 39

[GB03] M. Geilen and T. Basten. Requirements on the execution of Kahn process networks.
Lecture Notes in Computer Science, pages 319–334, 2003. 48, 58

[GG93] R. Govindarajan and GR Gao. A novel framework for multi-rate scheduling in DSP
applications. In International Conference on Application-Specific Array Processors,
pages 77–88, 1993. 59

[GGR+10] Christian Grothoff, Krista Grothoff, Matthew J. Rutherford, Kai Christian Bader,
Harald Meier, Craig Ritzdorf, Tilo Eissler, Nathan Evans, and Chris GauthierDickey.
DUP: A Distributed Stream Processing Language. In IFIP International Conference
on Network and Parallel Computing, Zhengzhou, China, 2010. Springer Verlag. 6

[GKN06] Emden Gansner, Eleftherios Koutsofios, and Stephen North. Drawing graphs with
dot, January 2006. 17

128

[GLB00] S. Girona, J. Labarta, and R.M. Badia. Validation of Dimemas communication model
for MPI collective operations. Proc. EuroPVM/MPI, 2000. 26

[GMA+02] M.I. Gordon, D. Maze, S. Amarasinghe, W. Thies, M. Karczmarek, J. Lin, A.S. Meli,
A.A. Lamb, C. Leger, J. Wong, et al. A stream compiler for communication-exposed
architectures. ASPLOS, pages 291–303, 2002. 67

[GMN+08] Lewis Girod, Yuan Mei, Ryan Newton, Stanislav Rost, Arvind Thiagarajan, Hari
Balakrishnan, and Samuel Madden. Xstream: a signal-oriented data stream man-
agement system. Data Engineering, International Conference on, pages 1180–1189,
2008. 6

[GNU] GNU Radio. http://www.gnu.org/software/gnuradio/. GNU Software Radio Project.
7, 35

[GR93] I. Galperin and R.L. Rivest. Scapegoat trees. In Proceedings of the fourth annual
ACM-SIAM Symposium on Discrete algorithms, pages 165–174. Society for Industrial
and Applied Mathematics Philadelphia, PA, USA, 1993. 102

[GR05] Jayanth Gummaraju and Mendel Rosenblum. Stream Programming on General-
Purpose Processors. In MICRO 38: Proceedings of the 38th annual ACM/IEEE
international symposium on Microarchitecture, Barcelona, Spain, November 2005. 39

[Gra71] RL Graham. Bounds on multiprocessing anomalies and related packing algorithms.
In Proceedings of the November 16-18, 1971, fall joint computer conference, pages
205–217. ACM, 1971. 77

[GSS06] Clemens Grelck, Sven-Bodo Scholz, and Alex Shafarenko. S-Net: A typed stream
processing language. In Zoltan Horváth and Viktória Zsók, editors, Proceedings of
the 18th International Symposium on Implementation and Application of Functional
Languages (IFL’06), Budapest, Hungary, Technical Report 2006-S01, pages 81–97.
Eötvös Loránd University, Faculty of Informatics, Budapest, Hungary, 2006. 6

[GTA06] M.I. Gordon, W. Thies, and S. Amarasinghe. Exploiting coarse-grained task, data,
and pipeline parallelism in stream programs. ASPLOS, pages 151–162, 2006. 40, 44,
54, 64, 67, 88

[HCAL89] Jing-Jang Hwang, Yuan-Chieh Chow, Frank D. Anger, and Chung-Yee Lee. Schedul-
ing precedence graphs in systems with interprocessor communication times. SIAM J.
Comput., 18:244–257, April 1989. 73

[HCK+09] A.H. Hormati, Y. Choi, M. Kudlur, R. Rabbah, T. Mudge, and S. Mahlke. Flextream:
Adaptive compilation of streaming applications for heterogeneous architectures. In
Parallel Architectures and Compilation Techniques, 2009. PACT’09. 18th Interna-
tional Conference on, pages 214–223. IEEE, 2009. 65

[HCW+10] Amir H. Hormati, Yoonseo Choi, Mark Woh, Manjunath Kudlur, Rodric Rabbah,
Trevor Mudge, and Scott Mahlke. Macross: macro-simdization of streaming appli-
cations. In Proceedings of the fifteenth edition of ASPLOS on Architectural support
for programming languages and operating systems, ASPLOS ’10, pages 285–296, New
York, NY, USA, 2010. ACM. 41

[HGG+99] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and A. Nicolau. EXPRESSION:
A language for architecture exploration through compiler/simulator retargetability.
In Proceedings of the conference on Design, automation and test in Europe, 1999. 39

129

[HJ03] Tarek Hagras and Jan Janecek. A simple scheduling heuristic for heterogeneous com-
puting environments. Parallel and Distributed Computing, International Symposium
on, 0:104, 2003. 73

[HL91] S. Ha and E.A. Lee. Compile-time scheduling and assignment of data-flow pro-
gram graphs with data-dependent iteration. Computers, IEEE Transactions on,
40(11):1225–1238, Nov 1991. 65

[HP07] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, fourth edition, 2007. 1, 65

[HPFF93] High Performance Fortran Forum. High Performance Fortran Language Specification,
Version 1.1. Scientific Programming, 2(1–2):1–170, November 1993. 3

[HPFF97] High Performance Fortran Forum. High Performance Fortran Language Specification,
Version 2.0. January 1997. 3, 5

[HS86] W. Daniel Hillis and Guy L. Steele, Jr. Data parallel algorithms. Commun. ACM,
29:1170–1183, December 1986. 3

[IBM] IBM. http://www.alphaworks.ibm.com/tech/mtrat. Multi-Thread Run-time Analy-
sis Tool for Java. 107

[IBM09] IBM. Cell Broadband Engine Programming Handbook including PowerXCell 8i Ver-
sion 1.11, 2009. 99

[IBM11] IBM. IBM Streams Processing Language Specification. 2011. 6

[iee99] IEEE Standard for Information Technology-Portable Operating System Interface
(POSIX)-Part 1: System Application Program Interface (API)- Amendment D: Ad-
ditional Real time Extensions [C Language]. IEEE Std 1003.1d-1999, 1999. 5

[ILO] ILOG. http://www.ilog.com/products/cplex/. CPLEX Math Programming Engine.
65

[Int10] Intel. A Quick, Easy and Reliable Way to Improve Threaded Performance: Intel Cilk
Plus, 2010. http://software.intel.com/en-us/articles/intel-cilk-plus. 5

[IP95] K. Ito and K.K. Parhi. Determining the minimum iteration period of an algorithm.
The Journal of VLSI Signal Processing, 11(3):229–244, 1995. 59

[JED10] J.C. Jenista, Y.H. Eom, and B. Demsky. OoOJava: an out-of-order approach to
parallel programming. In Proceedings of the 2nd USENIX conference on Hot topics
in parallelism, page 11. USENIX Association, 2010. 5

[Kar78] R.M. Karp. A characterization of the minimum cycle mean in a digraph. Discrete
mathematics, 23(3):309–311, 1978. 59

[KET06] C. Kyriacou, P. Evripidou, and P. Trancoso. Data-driven multithreading using con-
ventional microprocessors. IEEE Transactions on Parallel and Distributed Systems,
pages 1176–1188, 2006. 10

[Khr] Khronos Group. http://www.opengl.org/. 6

[Khr10] Khronos Group. The OpenCL Specification Version: 1.1 Document Revision: 36,
2010. 3, 5

130

[Kie99] B. Kienhuis. Design Space Exploration of Stream-based Dataflow Architectures:
Methods and Tools. Delft University of Technology, The Netherlands, 1999. 40

[KL70] B.W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs.
Bell System Technical Journal, 49(2):291–307, 1970. 50

[KL88] B. Kruatrachue and T. Lewis. Grain size determination for parallel processing. Soft-
ware, IEEE, 5(1):23–32, January 1988. 73

[KM+72] D.J. Kuck, Y. Muraoka, et al. On the number of operations simultaneously exe-
cutable in Fortran-like programs and their resulting speedup. IEEE Transactions on
Computers, pages 1293–1310, 1972. 3

[KM08] M. Kudlur and S. Mahlke. Orchestrating the execution of stream programs on multi-
core platforms. Proceedings of the 2008 ACM SIGPLAN conference on Programming
language design and implementation, pages 114–124, 2008. 42, 46, 56, 57, 64, 65, 67

[Koh75] W.H. Kohler. A preliminary evaluation of the critical path method for scheduling
tasks on multiprocessor systems. IEEE Transactions on Computers, 100(24):1235–
1238, 1975. 73

[KTA03] Michal Karczmarek, William Thies, and Saman Amarasinghe. Phased scheduling of
stream programs. In Proceedings of the 2003 ACM SIGPLAN conference on Lan-
guage, compiler, and tool for embedded systems, LCTES ’03, pages 103–112, New
York, NY, USA, 2003. ACM. 115

[KTJR05] R. Kumar, DM Tullsen, NP Jouppi, and P. Ranganathan. Heterogeneous chip mul-
tiprocessors. Computer, 38(11):32–38, 2005. 23

[LA00] Samuel Larsen and Saman Amarasinghe. Exploiting superword level parallelism with
multimedia instruction sets. In Proceedings of the ACM SIGPLAN 2000 conference
on Programming language design and implementation, PLDI ’00, pages 145–156, New
York, NY, USA, 2000. ACM. 8, 41

[Lam74] L. Lamport. The parallel execution of DO loops. Communications of the ACM,
17(2):83–93, 1974. 3

[LBS] W.I. Lundgren, K.B. Barnes, and J.W. Steed. Gedae: Auto Coding to a Virtual
Machine. 6, 40, 67

[LCM+05] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building
customized program analysis tools with dynamic instrumentation. In PLDI ’05, pages
190–200, 2005. 98

[LDWL06] S. Liao, Z. Du, G. Wu, and G.Y. Lueh. Data and Computation Transformations for
Brook Streaming Applications on Multiprocessors. In Proceedings of the International
Symposium on Code Generation and Optimization, pages 196–207. IEEE Computer
Society Washington, DC, USA, 2006. 67

[Lee86] E.A. Lee. A coupled hardware and software architecture for programmable digital sig-
nal processors (synchronous data flow). PhD thesis, University of California, Berkeley,
1986. 59

[Lee06] E.A. Lee. The problem with threads. Computer, 39(5):33–42, 2006. 2

131

[LK78] JK Lenstra and A.H.G.R. Kan. Complexity of Scheduling under Precedence Con-
straints. Complexity, 26(1), 1978. 72

[LM87] E.A. Lee and DG Messerschmitt. Synchronous data flow. Proceedings of the IEEE,
75(9):1235–1245, 1987. 39, 59, 77

[LMT+04] F. Labonte, P. Mattson, W. Thies, I. Buck, C. Kozyrakis, and M. Horowitz. The
stream virtual machine. 13th International Conference on Parallel Architecture and
Compilation Techniques, pages 267–277, 2004. 39

[LSB09] D. Leijen, W. Schulte, and S. Burckhardt. The design of a task parallel library. ACM
SIGPLAN Notices, 44(10):227–242, 2009. 5

[M+11] Harm Munk et al. ACOTES Project: Advanced Compiler Technologies for Embed-
ded Streaming. International Journal of Parallel Programming, 39:397–450, 2011.
10.1007/s10766-010-0132-7. ix, 8, 16, 19, 23, 121

[MAJ+09] C. Meenderinck, A. Azevedo, B. Juurlink, M. Alvarez, and A. Ramirez. Parallel
scalability of video decoders. Journal of Signal Processing Systems, 57(2):173–194,
2009. 89

[MAS+02] M. Maheswaran, S. Ali, HJ Siegal, D. Hensgen, and R.F. Freund. Dynamic matching
and scheduling of a class of independent tasks onto heterogeneous computing systems.
In Heterogeneous Computing Workshop, 1999.(HCW’99) Proceedings. Eighth, pages
30–44. IEEE, 2002. 73

[Mat02] P.R. Mattson. A Programming System for the Imagine Media Processor. PhD thesis,
Stanford University, 2002. 6

[Mat04] P. Mattson. PCA Machine Model, 1.0, 2004. 40

[MB06] Joseph Muscat and David Buhagiar. Connective Spaces. Mem. Fac. Sci. Eng. Shi-
mane Univ. Series B: Mathematical Science, 39:1–13, 2006. 44

[MIT98] MIT LCS. Cilk 5.4.6 Reference Manual, 1998. 106

[Moo65] G.E. Moore. Cramming more components onto integrated circuits(Cramming more
components onto integrated circuit for improved reliability and cost). Electronics,
38:114–117, 1965. 1

[MRC+07] J. Meng, S. Rohinton, S. Che, J. Huang, J.W. Sheaffer, and K. Skadron. Programming
with Relaxed Streams. Technical Report CS-2007-17, University of Virginia, 2007. 6

[MTHV04] P. Mattson, W. Thies, L. Hammond, and M. Vahey. Streaming virtual machine spec-
ification 1.0. Technical report, Technical report, 2004. http://www.morphware.org,
2004. 40

[Muc97] Steven S. Muchnick. Advanced compiler design and implementation. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1997. 8

[Mur71] Y. Muraoka. Parallelism exposure and exploitation in programs. PhD thesis, Uni-
versity of Illinois at Urbana-Champaign, Champaign, IL, USA, 1971. AAI7121189.
3

[Nana] Nanos Group. http://nanos.ac.upc.edu/content/presenting-nanos. 20, 71

132

[Nanb] Nanos project. http://nanos.ac.upc.edu/content/mintaka-instrumentation-library.
Mintaka Instrumentation Library. 18

[NS07] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In PLDI, pages 89–100, 2007. 97, 98, 107

[NVI08] NVIDIA Corporation. http://developer.nvidia.com/cuda/, 2008. NVIDIA CUDA
Compute Unified Device Architecture Programming Guide Version 2.0. 3

[OH96] Hyunok Oh and Soonhoi Ha. A static scheduling heuristic for heterogeneous pro-
cessors. In Luc Boug, Pierre Fraigniaud, Anne Mignotte, and Yves Robert, editors,
Euro-Par’96 Parallel Processing, volume 1124 of Lecture Notes in Computer Science,
pages 573–577. Springer Berlin / Heidelberg, 1996. 10.1007/BFb0024750. 73

[OH05] Kunle Olukotun and Lance Hammond. The future of microprocessors. Queue,
3(7):26–29, 2005. 1

[OIS+06] M. Ohara, H. Inoue, Y. Sohda, H. Komatsu, and T. Nakatani. MPI microtask for
programming the Cell Broadband Engine processor. IBM Systems Journal, 45(1):85–
102, 2006. 5

[Ope09] OpenMP Architecture Review Board. OpenMP Application Program Interface, Ver-
sion 3.0, May 2009. 5

[Org08] OpenMP Organization. OpenMP Application Program Interface, v. 3.0, May 2008.
3

[Par95] T.M. Parks. Bounded scheduling of process networks. PhD thesis, University of
California, 1995. 48, 58

[PBL08] J.M. Perez, R.M. Badia, and J. Labarta. A dependency-aware task-based program-
ming environment for multi-core architectures. In 2008 IEEE International Confer-
ence on Cluster Computing, pages 142–151, 2008. 5, 10

[Pol60] M. Pollack. The maximum capacity through a network. Operations Research, pages
733–736, 1960. 61

[Prv06] M. Prvulovic. Cord: cost-effective (and nearly overhead-free) order-recording and
data race detection. In High-Performance Computer Architecture, 2006. The Twelfth
International Symposium on, pages 232–243, Feb. 2006. 107

[PT03] M. Prvulovic and J. Torrellas. ReEnact: Using thread-level speculation mechanisms
to debug data races in multithreaded codes. In Annual International Symposium on
Computer Architecture, volume 30, pages 110–121, 2003. 107

[RDF98] N. Ramsey, J.W. Davidson, and M.F. Fernandez. Design principles for machine-
description languages. ACM Transactions on Programming Languages and Systems,
1998. 39

[Rei] J. Reinders. Intel Threading Building Blocks: Outfitting C++ for Multi-core Pro-
cessor Parallelism. 2007. 5

[RSL02] M.C. Rinard, D.J. Scales, and M.S. Lam. Jade: A high-level, machine-independent
language for parallel programming. Computer, 26(6):28–38, 2002. 5

133

[RVVA04] R. Rangan, N. Vachharajani, M. Vachharajani, and D.I. August. Decoupled software
pipelining with the synchronization array. In Parallel Architecture and Compilation
Techniques, PACT 2004. Proceedings. 13th International Conference on, pages 177–
188, 2004. 67

[SB97] Y. Smaragdakis and D. Batory. DiSTiL: A transformation library for data structures.
In Proceedings of the Conference on Domain-Specific Languages on Conference on
Domain-Specific Languages (DSL), 1997, page 20. USENIX Association, 1997. 6

[SBN+97] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A dy-
namic data race detector for multithreaded programs. ACM Transactions on Com-
puter Systems (TOCS), 15(4):391–411, 1997. 107

[Ser09] Serebryany, Konstantin and Iskhodzhanov, Timur. ThreadSanitizer—data race de-
tection in practice. In Proceedings of the Workshop on Binary Instrumentation and
Applications, pages 62–71, 2009. 107

[SFB+09] J. Sugerman, K. Fatahalian, S. Boulos, K. Akeley, and P. Hanrahan. GRAMPS: A
programming model for graphics pipelines. ACM Transactions on Graphics (TOG),
28(1):1–11, 2009. 6

[SGB06] S. Stuijk, M. Geilen, and T. Basten. Exploring trade-offs in buffer requirements and
throughput constraints for synchronous dataflow graphs. In Proceedings of the 43rd
annual conference on Design automation, pages 899–904, 2006. 67

[SL93] G.C. Sih and E.A. Lee. A compile-time scheduling heuristic for interconnection-
constrained heterogeneous processor architectures. IEEE Transactions on Parallel
and Distributed Systems, 4:175–187, 1993. 73

[SN05] J. Seward and N. Nethercote. Using Valgrind to detect undefined value errors with
bit-precision. In Proceedings of the annual conference on USENIX Annual Technical
Conference, page 2. USENIX Association, 2005. 98, 106

[SP09] Raül Sirvent Pardell. GRID Superscalar: a Programming Model for the Grid. PhD
thesis, Technical University of Catalonia (UPC), 2009. 5, 10

[THW99] H. Topcuoglu, S. Hariri, and M.Y. Wu. Task Scheduling Algorithms for Heterogeneous
Processors. In Proceedings of the Eighth Heterogeneous Computing Workshop, page 3.
IEEE Computer Society, 1999. 73

[TKA02] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A Language for Streaming
Applications. International Conference on Compiler Construction, 4, 2002. 6, 12, 39,
45, 108

[TKA+10] George Tzenakis, Konstantinos Kapelonis, Michail Alvanos, Konstantinos Koukos,
Dimitrios Nikolopoulos, and Angelos Bilas. Tagged procedure calls: Efficient runtime
support for task-based parallelism on the cell processor. In Yale Patt, Pierfrancesco
Foglia, Evelyn Duesterwald, Paolo Faraboschi, and Xavier Martorell, editors, High
Performance Embedded Architectures and Compilers, volume 5952 of Lecture Notes
in Computer Science, pages 307–321. Springer Berlin / Heidelberg, 2010. 5

[TKS+05] William Thies, Michal Karczmarek, Janis Sermulins, Rodric Rabbah, and Saman
Amarasinghe. Teleport messaging for distributed stream programs. In Principles
and Practice of Parallel Programming, pages 224–235, 2005. 116

134

[TOP] TOP500. http://www.top500.org/. 2

[Ull75] J.D. Ullman. NP-complete scheduling problems. Journal of Computer and System
Sciences, 10(3):384 – 393, 1975. 72

[Uni09] University of Tennessee. PLASMA Users’ Guide, Parallel Linear Algebra Software
for Multicore Architectures, 2009. 5

[VDKV00] A. Van Deursen, P. Klint, and J. Visser. Domain-specific languages: An annotated
bibliography. ACM Sigplan Notices, 35(6):36, 2000. 6

[vdWdKH+04] P. van der Wolf, E. de Kock, T. Henriksson, W. Kruijtzer, and G. Essink. Design
and programming of embedded multiprocessors: an interface-centric approach. Pro-
ceedings of the 2nd IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis, pages 206–217, 2004. 28

[VWY07] V. Vassilevska, R. Williams, and R. Yuster. All-pairs bottleneck paths for general
graphs in truly sub-cubic time. In Proceedings of the thirty-ninth annual ACM sym-
posium on Theory of computing, pages 585–589. ACM New York, 2007. 61

[WG90] M.Y. Wu and D.D. Gajski. Hypertool: A programming aid for message-passing
systems. IEEE Transactions on Parallel and Distributed Systems, 1(3):330–343, 1990.
73

[WTS+97] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank,
P. Finch, R. Barua, et al. Baring It All to Software: Raw Machines. Computer, pages
86–93, 1997. 67

[WY02] Namyoon Woo and Heon Young Yeom. k-depth look-ahead task scheduling in network
of heterogeneous processors. In Revised Papers from the International Conference
on Information Networking, Wireless Communications Technologies and Network
Applications-Part II, ICOIN ’02, pages 736–745, London, UK, UK, 2002. Springer-
Verlag. 73

[YG94] T. Yang and A. Gerasoulis. DSC: Scheduling Parallel Tasks on an Unbounded Number
of Processors. IEEE Transactions on Parallel and Distributed Systems, 5:951–967,
1994. 73

135

136

Index

acolib, 8, 28
ACOTES, 8, 16, 23
ASM, 8, 23, 48, 58

Basten and Hoogerbrugge, 67
bmod, 10, 99
Brook, 67

connected, 44
convex, 42, 118
CPLEX, 65

dynamic, 8

fires, 13, 44, 59, 61

Gedae, 40, 67

kernel, 6
KPN, 65

master thread, 5
multiplicity, 31, 35, 76, 109

Nanos++, 20

OMP Superscalar, 108
OmpSs, see OMP Superscalar
ORAS, 40

Paraver, 18
partitioning, 7
PDG, 70
prvanim, 18, 107
Ptolemy II, 65
pycparser, 109

R-Stream, 67

SDF, 39, 65
SDF tool, 67
SGMS, 42, 65
SPIR compiler, 68
SPM, 16, 44
Star Superscalar, 9

StarssCheck, 97
static, 8
str2oss, 18, 108
stream, 6, 12
StreamIt, 12, 108
StreamRoller, 65, 67
SVM, 39

task, 5
taskgroup, 17
tolower, 16
TTL, 28

unrolling, 7

Valgrind, 98

worker, 5

137

	Introduction
	Approaches to parallelism
	Data parallelism
	Task-level parallelism
	Streaming parallelism

	Compile-time vs run-time decisions
	The ACOTES stream compiler
	Task-level languages
	StarSs and OmpSs

	Streaming languages
	StreamIt language
	SPM (Stream Programming Model)

	Tool flow and support tools
	Debugging using StarssCheck
	Performance visualisation
	StreamIt to OmpSs

	Contributions and publications
	Thesis outline

	Abstract Streaming Machine
	Scope of the ASM
	ASM Machine Description
	ASM Program Description
	Platform characterisation
	Validation of the ASM
	Using the ASM
	Static partitioning
	Static buffer sizing

	Related work

	Compile-time Decisions
	Motivation
	Convexity
	Connectivity
	Queue sizes

	Static partitioning
	The partitioning problem
	Predicting memory use of tasks

	The partitioning algorithm
	Initial partition
	Refinement of the partition

	Evaluation

	Static buffer sizing
	The buffer sizing problem
	The buffer sizing algorithm
	Cycle detection algorithms
	Critical cycle algorithm
	Baseline algorithm
	Token algorithm

	Buffer size update algorithms

	Evaluation

	Related work
	Conclusions

	Run-time Decisions
	The dynamic scheduling problem
	Interface to the dynamic scheduler
	Throttle policy
	Objective function: comparing schedulers

	Survey of DAG scheduling techniques
	The online scheduling policies
	Scheduler complexity

	Theoretical evaluation
	Exhaustion
	Back pressure

	Adaptive schedulers
	Intuition
	Monitoring
	Updating statistics

	Updating priorities for apriority
	Update algorithm
	Updating ancestors

	Updating priorities for gpriority

	Experimental evaluation
	Infrastructure and benchmarks
	Scalability
	Average and worst-case results
	Average
	Robustness

	Detailed results

	Conclusions

	Support Tools
	Debugging using StarssCheck
	Common StarSs errors
	How StarssCheck works
	Overview
	High-level interface to Starssgrind
	Starssgrind contexts

	Evaluation
	Performance
	Limitations
	Eliminating false positives

	Related work

	Performance visualisation using Paraver Animator
	StreamIt to OmpSs conversion
	The conversion process
	Overview and front end
	Generate StarSs source

	Example: simplified FM Radio
	Current limitations
	High level transformations

	Conclusions
	Glossary
	Bibliography
	Index

