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ABSTRACT
Scaling to larger systems, with current levels of reliability, requires
cost-effective methods to mitigate hardware failures. One of the
main causes of hardware failure is an uncorrected error in memory,
which terminates the current job and wastes all computation since
the last checkpoint. This paper presents the first adaptive method
for triggering uncorrected error mitigation. It uses a prediction
approach that considers the likelihood of an uncorrected error and
its current potential cost. The method is based on reinforcement
learning, and the only user-defined parameter is the mitigation cost.
We evaluate our method using classical machine learning metrics
together with a cost–benefit analysis, which compares the cost of
mitigation actions with the benefits from mitigating some of the
errors. On two years of production logs from the MareNostrum
supercomputer, our method reduces lost compute time by 54%
compared with no mitigation and is just 6% below the optimal
Oracle method. All source code is open source.
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1 INTRODUCTION
System resilience is an important requirement for large-scale clus-
ters, especially in high-performance computing (HPC), where a
single job may execute for days on thousands of nodes. If any node
fails, the job is terminated, wasting all CPU–hours since the last
checkpoint. One of the principal causes of hardware failure in HPC
clusters is an uncorrected error (UE) in mainmemory [25, 29, 30, 56].
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A cost-effective DRAM error mitigation scheme will therefore allow
us to maintain reliability as we scale to larger systems.

The majority of prior work on prediction of corrected [7, 15, 18,
44, 61] and uncorrected [25, 42, 64] memory errors shows great
performance in terms of accuracy, precision, and recall. It is unclear,
however, whether these prediction methods can be used as the
basis for a memory error mitigation scheme that is cost-effective
and useful in practice. Practical cost-effectiveness and usefulness
can only be evaluated using a cost–benefit analysis, which com-
pares the resources needed for training, prediction and failure mit-
igation against the saved compute time due to successful mitiga-
tion [11]. Saved compute time is quantified in node–hours, which
is the sum across all nodes of the wallclock time (in hours) that
would otherwise have been lost. Cost–benefit analysis is complex
and dependent on the failure mitigation strategies and HPC job
sizes [11, 17]. On a given system, the cost of an uncorrected error
varies among jobs whose size and duration can differ by orders of
magnitude [23, 27, 48–50, 57, 70, 71], and evenwithin a single job de-
pending on the time since it started or last performed a checkpoint.

To the best of our knowledge, this paper develops and evaluates
the first adaptive AI method that decides to trigger the mitigation
action depending on both the likelihood of an error and its poten-
tial cost to the current jobs. Our method is based on reinforcement
learning (RL), and it takes account of preceding warnings, corrected
and uncorrected errors, and node-level events such as reboots. The
RL agent decides when to take active measures to mitigate a poten-
tial uncorrected error. It is independent of the specific method used
for mitigation, so it can be applied to control various approaches
such as node cloning, live job migration or checkpointing. The only
user-defined parameter is the total mitigation cost, so the method
can be applied to other systems without customization or tuning.
We release all code as open source [3].

We train and evaluate the model on MareNostrum [4], one of
six Tier-0 HPC systems in Europe. At the time of the study, it
comprised 3056 nodes with more than 25,000 memory DIMMs.
The error logs cover a production period of more than two years,
from October 2014 to November 2016, during which we detected
4.5 million corrected errors and 333 uncorrected errors.

The cost–benefit analysis shows a saving of more than 40,000
node–hours over two years, a 54% reduction compared with no
mitigation. This saving is just 6% below that of the optimal Or-
acle prediction scheme. The evaluation starts from an untrained
model, and is based on time series cross-validation, in order to avoid
overfitting to the fixed historical data [68].

We increase confidence in the generality of the method by show-
ing that it works well for all threemajor DRAMmanufacturers. Eval-
uation with different mitigation costs indicates that the model could
be applicable to different failure mitigation approaches. Finally, the
model outperforms other predictors when the job sizes are scaled up
to ten times smaller or larger than during MareNostrum production.
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Applying our method to larger systems would therefore lead to
roughly proportional savings that are larger by orders of magnitude.

The rest of the paper is structured as follows. Section 2 describes
the environment and collection of the error and job logs. Section 3
explains the Markov decision process formulation of the problem
and its solution using a dueling double deep Q-network. Section 4
explains the evaluation methodology and Section 5 gives the results.
Section 6 is the related work and Section 7 concludes the paper.

2 ENVIRONMENT DESCRIPTION
2.1 MareNostrum 3 error logs
Our algorithm is trained and evaluated using memory error and
job logs from two generations of the MareNostrum supercomputer.
The error logs were obtained from MareNostrum 3 [4] over more
than two years of production from October 2014 to November 2016.
At the time, MareNostrum 3 was one of six Tier-0 (largest) HPC
systems in the partnership for advanced computing in Europe
(PRACE) [2]. It comprised 3056 compute nodes, each with two
eight-core Intel Sandy Bridge-EP E5-2670 sockets and a clock fre-
quency of 2.6 GHz. We use the error logs from the compute nodes,
excluding the login and test nodes that are not part of the moni-
toring infrastructure and whose failures do not affect the compute
jobs. The jobs executed on MareNostrum 3 were mainly large-scale
scientific HPC applications, and system utilization was generally
above 95%. During the observation period, we collected data from
more than 25,000 DDR3-1600 DIMMs. We analyze DIMMs from all
three major memory manufacturers, which have been anonymized
and are referred to asManufacturer A, B and C. There are 6694, 5207
and 13,419 DIMMs from Manufacturer A, B and C, respectively.

MareNostrum 3 employed single device data correction (SDDC)
ECC. The ECC check is performed on each application memory re-
quest and by a patrol scrubber which periodically traverses physical
memory and performs an ECC check on each location.

2.1.1 Corrected errors (CEs). A daemon, based on mcelog from
Linux [34], periodically extracted information related to corrected
errors from the Intel CPU machine check architecture (MCA) regis-
ters [34]. Each CE was recorded in the log file, specifying the time
stamp, node id, DIMM id, and physical location of the error includ-
ingDIMM rank, bank, row and column.1 The log entry also indicates
whether the CE was found by an application memory read or the
patrol scrubber. If there were more than one error within the mea-
sured time period, the MCA registers record the number of errors
and provide detailed information for only one of the errors. Our logs
therefore give the precise number of CE and they provide detailed er-
ror information for a subset of the errors. We selected a time period
of 100ms for the daemon, as this was the shortest time period with
a negligible performance overhead. A shorter period would increase
the size of the sample of detailed error information, but it would
also increase the overhead. Previous studies perform readings at a
similar [11, 58–60] or larger time period, up to once per hour [37].

2.1.2 Uncorrected errors (UEs). The IBM firmware [31], which is
part of the MareNostrum 3 monitoring software, logged uncor-
rected errors, specifying, for each error, which DIMM failed and
1The mapping from address to physical location is sensitive manufacturer information,
and was obtained using help from a memory manufacturer.

whether the UE occurred during an application memory read or
it was found by the patrol scrubber. The log also contains critical
over-temperature conditions, which similarly cause the node to be
shut down, so are counted as equivalent to uncorrected errors. It
additionally records UE warnings, generated when the correctable
ECC logging limit has been reached or the memory modules are
throttled to prevent an over-temperature condition. UE warnings
are input features to the algorithm but not counted as UEs.

2.1.3 UE reduction. As is the case for many failure events [26, 55],
uncorrected errors tend to appear in bursts [11, 74]. Burstiness
is important to consider in any study related to UE prediction or
mitigation, especially since, for our dataset at least, the second and
subsequent UEs within a burst, which have no effect on system
reliability, are much easier to predict than the first UE in a burst. In
MareNostrum, whenever a node encountered a UE, it was removed
from production and tested for one week. This means that only the
first UEs on a node, within a period of one week, have an impact
on a production workload. Filtering the dataset to contain only the
first UE in each burst (of up to a week), reduced the number of UEs
from 333 UEs to 67 UEs, making a major difference to our method’s
design and evaluation.

2.1.4 DIMM retirement bias. MareNostrum includes a pre-failure
alert, which identifies DIMMs that are close to failure. Such DIMMs
were retired in order to reduce the incidence of uncorrected errors
in the production system. Over the two-year production period,
51 DIMMs were retired by the system administrators. This action
is recorded in the system log with the date and time. We could not
determine the specific reasons for DIMM retirement. Surprisingly,
most of the retired DIMMs experienced no preceding corrected or
uncorrected errors in the error log, and they performed no node
boots in the days before the retirement. A recent IBM study [25]
mentions hundreds of sensors that are used by the system inte-
grators to predict component failures. We had no access to these
sensors in the system under study.

Preventive DIMM retirement introduces a bias in training and
evaluation that we were unable to avoid. Since it is impossible to
know whether an event followed by DIMM retirement would oth-
erwise have been followed by an uncorrected error, we remove all
such samples from training and evaluation.

2.1.5 Quantitative analysis. Zivanovic et al. [74] perform detailed
analysis of the same MareNostrum 3 error logs that are used in
our study. They apply several different methods for quantitative
and statistical analysis of the DRAM corrected and uncorrected
errors, as well as memory system faults. The authors also compare
the results for different DRAM manufacturers and DRAM cell tech-
nologies. The number of UEs in Zivanovic et al. differs from our
results by about 6%. This is because they exclude DIMM critical
over-temperature conditions and ignore address DIMM retirement
bias (Section 2.1.4). Their analysis is a complement to this paper
and it gives confidence that the error logs used for our study are
representative of typical DRAM failures.

2.2 MareNostrum 4 job logs
The log of the jobs was obtained from the general-purpose block
of the successor, MareNostrum 4 [5], which has 3456 nodes, each
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with two 24-core Intel Xeon Platinum sockets at 2.1 GHz. The job
log covers the production period from Mar. 2018 to Mar. 2019. For
practical reasons, it was impossible to use error and job logs from
the same period and system. We believe that combining logs from
different machines and different production time periods does not
significantly change any of the conclusions. The only major aspect
that could not be addressed in this study is any possible correlation
between the occurrence of errors and recorded job characteristics
such as wallclock duration and number of nodes.

The job log was collected by Slurm [72], which is the job sched-
uler used to run jobs on MareNostrum 4. We extracted the log using
the sacct command, which provides the job’s submission time, start
and end times, allocated node IDs, and other information.

3 ADAPTIVE ERROR MITIGATION CONTROL
3.1 Background
Reinforcement learning (RL) is one of the most promising machine
learning (ML) approaches for tackling hard control problems. The
main difference between RL and other MLmethods is that RL learns
in a dynamic environment. An RL approach is composed of three
main elements: the agent, the environment, and the reward function.
The agent interacts with the environment, which is a model of
the system, by observing the current state of the environment and
taking a specific action. In response, the environment changes the
state and the agent receives a reward. The agent’s goal is to discover
and take the optimal sequence of actions in the environment in
order to maximize the cumulative sum of the rewards. The learned
mapping between the states of the environment and the actions is
known as the policy. The agent learns, i.e. it updates its policy, by
exploring and interacting with the environment.

An RL problem is usually formalized as a Markov decision pro-
cess (MDP) [9], which has four elements: 1) the set of states of
the environment, 2) the set of possible actions, which may depend
on the current state, 3) the probabilities of moving among states
depending on the action, and 4) the rewards associated with these
transitions. Each will be explained in the context of DRAM error
mitigation in Section 3.2.

The goal of an RL algorithm associated with an MDP is to find
a policy that maximizes the discounted sum of the rewards from
each time-step: ∑︁

𝑡

𝛾𝑡𝑅(𝑡), (1)

where 𝛾 (gamma) is the discount factor and 𝑅(𝑡) is the reward
obtained at time 𝑡 . The discount factor is between 0 and 1, and
its value controls the tradeoff between taking an immediate high
reward and maximizing rewards over time.

Q-learning [66] is an RL algorithm in which the agent indepen-
dently learns the value of each action in each state. The value is
the expected accumulated reward, from Equation 1, of taking a
given action in the starting state and following the learned policy
thereafter. All these values, for every possible state and action, are
stored in a table known as the Q-function.

Many problems, including DRAM error mitigation, have states
with a large number of dimensions, some of which are continuous or
have so many values they are effectively continuous. Learning and
storing the value of each state individually would be prohibitive in

Table 1: Features used for UE mitigation control

Feature in state (per node)

Corrected errors (CEs):
Number of corrected errors since the last event
Number of CEs since the beginning of operation∗
Number of ranks, banks, columns and rows with CEs
Number of DIMMs with CEs

Uncorrected errors:
Number of UE warnings since the beginning of operation

System state:
Time since the last node boot (start)
Number of node boots∗

Workload:
Potential uncorrected error (UE) cost

∗ Feature variation over time (Equation 2) is calculated for this feature.

terms of training time and storage, so various approaches are used
to approximate the Q-function. One of the best known approaches,
deep Q-learning [40], approximates the Q-function using a deep
neural network known as a deep Q-network. The agent trains the
network to minimize a loss function, which quantifies the error
introduced by approximating the Q-function.

We employ two known approaches: dueling double deep Q-
network (DDDQN) [65] and prioritized experience replay (PER) [53].
A DDDQN is both a double deep Q-network and a dueling network
architecture. A double deep Q-network uses two different neural
networks, one to select the action and the other to evaluate it, miti-
gating a well known overestimation bias due to self-evaluation. A
dueling network architecture splits the Q-function into two parts,
known as the value function and the advantage function. The value
function is the expected reward, according to the policy, in a given
state and the advantage function indicates how much better each
action is compared with the expected reward. This approach is
known to converge more rapidly to an optimal policy [65]. PER
stores the outcomes of past experience in the environment, and
training is done based not only on the current actions but mini-
batches of past experiences. The most important experiences are
prioritized so as to improve the efficiency of learning.

3.2 MDP formulation of UE mitigation control
3.2.1 State and features. The features in the state are listed in Ta-
ble 1. The CE, UE and system state features, i.e. all features except
the potential UE cost, are derived from the error log events observed
in the nodes of MareNostrum 3. All features are calculated at each
time step, and provided directly to the agent. In addition, for the
two features annotated with an asterisk, the feature variation over
time is calculated as:

Feat. variation (Δ𝑡 ) =
Feat. value (Prediction moment)

Feat. value (Prediction moment - Δ𝑡 )
, (2)

where Δ𝑡 is the time increment. The feature variation over time is
calculated for Δ𝑡 equal to 1 minute and 1 hour, and it is set to zero
if the denominator in the above equation is zero.
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The potential UE cost depends on the workload, and is the to-
tal number of node–hours that would have been lost if a UE had
occurred at the moment the agent is invoked:

UE_cost = nodes ×min(wallclock_since_job_start,
wallclock_since_mitigation) . (3)

3.2.2 Actions. There are always two actions available to the agent:
it can either request a job mitigation (action 𝑎 equals 1) or do
nothing (𝑎 equals 0).

3.2.3 State transitions. After taking an action, the agent has noth-
ing to do until the next event. If the next event is a UE, then the
whole node is shut down and the job is terminated without invok-
ing the agent. Otherwise, the state will transition to correspond to
the next event. When the events are taken from a historical log, the
CE, UE and system state features and their relative rates of change
over time do not depend on the agent’s last action. The potential
UE cost, however, always depends on whether a mitigation was
performed. If the agent did not trigger a mitigation, then the po-
tential UE cost is increased by the job’s elapsed node–hours. If the
agent requested a mitigation, then the potential UE cost is first set
to zero to reflect the mitigation action, and then it is increased by
the job’s elapsed node–hours. There is a minimum wallclock time
between state transitions of one minute, so that events occurring
within the same minute are combined. For our system we found
that a higher frequency than once per minute would increase the
overhead but make no improvement to the cost–benefit analysis.

3.2.4 Reward. The reward function is calculated based on the lost
node–hours of the system:

𝑅𝑎 = −𝑎 ×mitigation_cost − UE_occurred × UE_cost, (4)

where 𝑎 is the action (1 for a mitigation) and UE_occurred equals 1
if a UE occurred following the action and 0 otherwise.

3.2.5 Error mitigation actions and cost. The RL agent decides when
to perform mitigation actions, based on the error-related features
and the potential cost of an error. If the agent requests a mitigation,
then the actual error mitigation is performed by the environment.
As such, the agent is independent of the specific mitigation method,
and the only mitigation-related parameter is the mitigation cost.

The training and evaluation in Section 5 uses a error mitigation
cost of 2 node–minutes, following estimations from a recent study
of Das et al. [17]. The study analyzes various actions that can
mitigate the impact of node failures, such as live job migration,
node cloning and checkpointing, and concludes that 2min suffice
for most of these actions. We also consider the mitigation cost of 5
and 10 node–minutes, which is the checkpointing time considered
in various previous studies [10, 21, 22, 24, 33, 46, 51].

Finally, the UE cost is calculated using Equation 3 with the times-
tamp of the UE. This means that the UE cost always includes the
full time elapsed between the last mitigation and the actual UE. The
goal of the agent is to maximize the cumulative discounted sum of
these negative costs.

3.3 Solving the Markov Decision Process (MDP)
3.3.1 Overall approach. Figure 1 illustrates how the RL agent solves
the MDP problem described in the previous section. The diagram

Mitigation
System

UEs
CEs

Workload
Manager

Monitoring &
Preprocessing

Prioritized Experience
Replay Memory

Dueling Double
Deep Q-Network

Action a

Features

Job state

AgentEnvironment

Reward r

State s

Events

Figure 1: Interaction between RL agent and environment for
adaptive UE mitigation.

shows the environment on the left and the agent on the right. In our
implementation based on historical logs, the environment obtains
the UEs, CEs, events and job state from the logs, as described in
Section 2. In a real system, the environment would collect this infor-
mation from the monitoring daemons and workload manager. The
environment passes the state to the agent, which supplies the state
features to the neural network to determine the action. In order to
avoid overestimation of the action values and to learn a better pol-
icy, we use a dueling double deep Q-learning neural network. Given
the action selected by the agent, the environment either performs a
mitigation or it does not. On the next event, it calculates the reward
for the last action, depending on the last time that mitigation was
performed and whether or not the next event is a UE.

3.3.2 Architecture. As an approximator for the Q-function, the
agent uses a deep neural network composed of the input features,
four hidden layers with 256, 256, 128, and 64 neurons, respectively,
and a single output to indicate whether or not to mitigate.

3.3.3 Training. Training is divided into episodes, each of which is
a “run” of the agent in its environment from an initial to a terminal
state. In our context, a single node is chosen randomly and the
episode runs from the beginning to the end of the split (Section 4.1),
taking all events on that node. A sequence of jobs is randomly
chosen to run on the node. The jobs are weighted by the number of
nodes on which they execute, in order to maintain the correct job
distribution. During training, the agent learns to maximize the re-
ward by improving its future actions based on its current experience.

3.3.4 Class imbalance. During the two-year period, there were 67
UEs (following UE reduction of Section 2.1.3) out of a total of 259,270
events (after merging events in the same minute). This imbalance
of 3.5 orders of magnitude between the numbers of UEs and events
causes the learning process to be slow. We therefore use a form of
experience replay known as prioritized experience replay (PER) [53]
(Section 3.1), which speeds up learning by prioritizing experiences
that are expected to result in more learning progress.
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Figure 2: Evaluation using time series nested cross-validation.
The error log is divided into six equal parts and evaluation
for each split is divided into training (with multiple
hyperparame- ters), validation (to find the best hyperparam-
eters), and testing.

4 EVALUATION METHODOLOGY
4.1 Time series nested cross-validation
We evaluate our RL approach on production data using time series
nested cross-validation, which is a well-known technique for de-
termining how well a model performs and generalizes in a setup
similar to how it would be used in practice. Figure 2 summarizes this
methodology. The error log is divided into six equal parts (shown
horizontally), each of which corresponds to roughly four months
of data. These parts are used to create six splits (shown vertically),
each of which allows a separate evaluation on a part of the test data,
using a model trained with hyperparameters chosen using data
that precedes that part. The evaluation for each split is divided into
training (with multiple hyperparameters), validation (to find the
best hyperparameters), and testing (to evaluate the cost–benefit).
Although it is common in RL to only present the results for an
agent using the best hyperparameters, our use of historical data
rather that an interactive setting means that this approach would
introduce bias [68].

In the hyperparameter tuning phase we adjust the learning rate
of the neural networks, the discount factor 𝛾 , the update and syn-
chronization frequencies of the two networks and some of the
parameters of the prioritized experience replay, such as the batch
sample size. We perform a first round of random search with 60
sets of hyperparameters, selecting the hyperparameters of the best
performing agent on the training data and running another round
with a narrowed search space, close to those best hyperparameters,
finally selecting the best performing agent on the validation set.
Each agent is trained with 20,000 episodes,2 which proved to be
sufficient to achieve stable decisions with good rewards.

Each split, except the first, allocates the first 75% of the time
before the new part for training and the remaining 25% for valida-
tion. The training set is used to train multiple agents with different
hyperparameters, starting from an untrained model for the first
split and a mix of previously trained and untrained models for each
subsequent split. The validation set is then used to select the best
performing agent. If there are no UEs in the validation set, which

2Although the error and job logs are fixed historical records, each episode is different
because it uses a random sequence of jobs (Section 3.3.3).

happens when partitioning by manufacturer due to the low fre-
quency of UEs, then we select the best performing agent for the
training set. This introduces some bias but it avoids the risk of
choosing a weak mitigation policy. The best agent is then evaluated
using the testing dataset. The testing dataset is then incorporated
into the training and validation datasets of the next part, which
is again divided in the same ratio of 75% to 25%. The first split
is slightly different, because it employs the first two weeks from
the log for both training and validation, and the rest of the first
three-month part is used for testing. This approach allows us to
include almost all of the production log in the evaluation. The over-
all result is the total node–hours lost, due to mitigations and UEs,
accumulated across all six splits used for evaluation.

4.2 Approaches under evaluation
We evaluate six prediction-based approaches that can be used to
decide when to perform UE mitigation:

• Never-mitigate does not initiate any UE mitigation. It leads
to the maximum possible UE cost but the minimum possible
mitigation cost.

• Always-mitigate triggers a UE mitigation for every event
in the error log. It has the minimum possible UE cost but
the maximum possible mitigation cost, among policies that
signal mitigations only when there is an error event. It is
implicitly a form of predictor, since an event in the error log
is treated as an indicator of an upcoming UE.

• SC20-RF is the state-of-the-art random forest (RF) predictor
of Boixaderas et al. [11]. The authors applied six machine
learning classifiers and found that random forest, with ran-
dom under-sampling to address class imbalance, provided
the best results. The output of the random forest predictor
is a value from 0 to 1 that represents the probability of an
uncorrected error. A mitigation is triggered if the value ex-
ceeds an externally provided threshold parameter. We start
from an untrained model, but provide maximum advantage
to SC20-RF by using the optimal threshold parameter.

• SC20-RF-2% and SC20-RF-5% are the SC20-RF policy with
realistic (suboptimal) values of the threshold parameter, dif-
fering from the optimal value by 2% and 5% respectively.

• Myopic-RF is an extension of SC20-RF that adapts to the cur-
rent potential UE cost. It triggers a mitigation action if the
expected cost from a UE (probability of a UE multiplied by
the cost it would have), without mitigation, is greater than
the cost of mitigation. The probability of a UE is estimated
by the RF predictor.

• RL is the reinforcement learning approach presented in this
paper, always starting from an untrained model.

• Oracle signals a UE mitigation on the last event before each
UE. It therefore performs the minimum number of mitiga-
tions necessary to predict the maximum number of UEs. It
is the optimal strategy assuming that all mitigations are per-
formed following events in the log. It is not a realistic policy
for implementation, but it allows us to quantify the room
for improvement.
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4.3 Total costs in node–hours
All cost–benefit calculations show the total number of lost node–
hours, i.e. the sum of the UE cost and mitigation cost. The UE cost
is computed using Equation 3, calculated at the precise time of each
UE. The mitigation cost is the total cost of the mitigation actions
plus, for SC20-RF, Myopic-RF and RL, the cost of all training and val-
idation used to create the model. The time to determine the optimal
threshold parameter for SC20-RF is not included in the evaluation.

There is a 7% difference between our results for SC20-RF in
Section 5 and the results in its original publication [11]. This is
because the previous study does not compute the lost compute time
between the mitigation action and a UE, when a UE occurs inside
the prediction window (period for which the prediction is made).
Our results always count the full UE cost, including the full time
period between the last mitigation action and the UE.

4.4 Classical machine learning metrics
Previous studies that propose error prediction methods [11, 15, 18,
25, 61, 64] are evaluated using standard prediction metrics such as
recall or precision. For completeness, and to allow a direct compar-
ison with these methods, we also evaluate our RL method using
these standard metrics.

In order to perform this evaluation, we classify the actions of
the prediction-based methods as:

• True positives (TPs): Number of UEs that were mitigated.
• False negatives (FNs): Number of UEs that were not miti-
gated.

• False positives (FPs): Number of mitigations minus the
number of TPs.

• True negatives (TNs): Number of non-mitigations minus
the number of FNs.

Following Boixaderas et al. [11], the classical machine learning
metrics assume a prediction window of 1 day. This means that a
UE is counted as successfully mitigated, i.e. as a true positive, if at
least one mitigation action completed within the previous 24 hours,
i.e. was initiated within the previous 24 hours minus the 2 node–
minutes mitigation overhead specified in Section 3.2. The remaining
UEs are counted as not mitigated, i.e. as false negatives. We only
employ the prediction window to calculate the classical machine
learning metrics, which need a binary classification into mitigated
or not mitigated. The cost–benefit calculation uses the real UE and
mitigation costs described in Section 4.3.

The number of mitigations is the number of times that the policy
selects the mitigation action (𝑎 = 1 in the case of RL). A single
UE may be mitigated multiple times within the 24-hour period,
but only one of these mitigations (which can be imagined to be
the one that happens last) is a true positive. The other mitigations
are redundant and counted as false positives. The number of non-
mitigations is the number of times that the policy selects not to
mitigate (𝑎 = 0 for the RL agent) plus the number of UEs that have
no event in the preceding time window of 1 day. If there is no event
within the 24 hours before the UE, then none of the policies, all of
which mitigate only in response to an event, has an opportunity
to mitigate the UE. Nevertheless, since the UE was not mitigated,
it must be counted as a false negative, to avoid biasing our results
by ignoring the hardest-to-mitigate UEs. We avoid this bias by

assuming that the system makes an implicit “no-mitigate” false
negative action for these UEs.

Recall is the proportion of actual positives that are correctly
identified as such. In our case, this metric refers to the fraction of
UEs that are correctly predicted:

Recall =
Correctly predicted UEs
Total UEs occurred

=
TPs

TPs + FNs

Precision refers to the percentage of observations classified as
positives that are true positives. In our case, the precision refers to
the ratio between correctly predicted/mitigated UEs and the total
number of mitigations performed:

Precision =
Correctly predicted UEs

Total mitigations
=

TPs
TPs + FPs

4.5 Generality to other job sizes
We increase the confidence in the generality of our method to dif-
ferent HPC system architectures and HPC job sizes. To consider
different architectures, we partition the MareNostrum 3 error logs
by DRAM manufacturer, generating three smaller subsystems, of
size 6694, 5207 and 13,419 DIMMs, from anonymized Manufactur-
ers A, B and C respectively. With few exceptions, all DIMMs in
a given node are from the same DRAM manufacturer. Firstly, we
trained and evaluated the method on the whole system, MN/All.
Secondly, we performed separate training and testing for each sub-
system comprising a single DIMM manufacturer: MN/A, MN/B and
MN/C. Finally, we give results for the sum of the three subsystems,
MN/ABC, which differs from MN/All only because it uses three
separately trained models.

To consider different HPC job sizes, we perform a job size sen-
sitivity analysis. This is necessary because HPC jobs are known
to differ in size and duration by orders of magnitude [23, 27, 48–
50, 57, 70, 71]. We investigate the effect on the cost–benefit calcu-
lation of job sizes up to ten times smaller or ten times larger than
those seen on MareNostrum 4. Future work could consider how the
results would differ for cloud platforms, using the public datasets
from Microsoft Azure [14] or Google Borg [69], or for other HPC
systems using public logs [1] or synthetic trace generators [13].

4.6 Generality to other hosts and memory
architectures

Our results are for a single supercomputer and memory system
architecture (with three different vendors). To fully test the gen-
erality of our method, it is important to consider other CPU or
GPU host architectures with different error correction schemes and
error logging capabilities. It would also be interesting to analyze
the impact of on-die ECC, as supported by current HPC DIMMs,
which transparently corrects errors in the memory devices. On-die
ECCs are not standardized by JEDEC or as part of the host–memory
interfaces, so the impact could be very different for different man-
ufacturers. Modern memory interfaces, HBM, DDR DIMMs and
memory-over-CXL enable more heterogeneity in the memory sys-
tem, which may also impact the results.
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Figure 3: Total cost for MN/All, as the sum of UE cost (solid
color) and mitigation cost (with dashes). The RL agent has
lower total cost than the other approaches due to a much
lower mitigation cost. Unlike SC20-RF it is not sensitive to a
user-supplied parameter. The results are stable formitigation
costs between 2 node–minutes and 10 node–minutes.

Our RL method is released as open source. Since it has no user-
supplied parameters, the method can be applied without any cus-
tomization or tuning to different host and memory system archi-
tectures. We encourage the community to evaluate the method on
different systems and share their findings.

5 RESULTS
5.1 Cost–benefit analysis
Figure 3 shows the overall results of the cost–benefit analysis. The
𝑦-axis is the total cost over the two-year production time period,
which is the sum of the cost of the UEs (solid color) and the cost
of mitigations (with dashes), calculated as the sum across all six
splits in the time series nested cross-validation (Section 4.1). The
eight bars for each scenario correspond to the eight approaches
described in Section 4.2. These are the two baseline policies, Never-
mitigate and Always-mitigate (on every error-related event), the
state-of-the-art SC20-RF policy with optimal and suboptimal thresh-
old parameters, Myopic-RF (our adaptive extension of SC20-RF), the
RL approach of this paper, and the optimal Oracle policy. Results
are given for mitigation costs of 2, 5 and 10 node–minutes.

In all scenarios, the Never-mitigate policy has a large cost, under-
scoring the need for some kind of UE mitigation approach. Its cost
is entirely due to UE costs, so it is independent of the mitigation
cost, at 74,035 node–hours over the two-year production period.
The simplest mitigation strategy, Always-mitigate, is effective for
a small mitigation cost of 2 node–minutes, reducing the cost by
46% to 39,769 node–hours. It has the lowest possible UE cost for
our dataset and approach triggered by events in the log, but also
the highest mitigation cost, at 8642 node-hours. As the mitigation
cost increases, however, the cost of Always-mitigate increases dra-
matically, and for a cost of 10 node–minutes, it is slightly worse
than Never-mitigate (see Section 5.6 for a sensitivity analysis using
smaller and larger job sizes). Always-Mitigate implicitly includes
a form of prediction, since “always” means that any kind of event
in the log is treated as an indicator of an upcoming UE.

Figure 4: Time series nested cross-validation for MN/All with
2 node–minute mitigation cost, starting from untrainedmod-
els. The total cost is the sum of UE cost (solid color) and mit-
igation cost (with dashes).

The random forest predictor of SC20-RF, with the optimal choice
of the user-defined threshold parameter, reduces the total cost
significantly. For a 2 node–minute mitigation cost, it reduces the
cost by 52% compared to Never-mitigate to 35,543 node–hours. The
decision threshold for SC20-RF needs to be selected carefully, as it
significantly affects the machine learning metrics and cost–benefit
analysis [11]. The results verify this, as with a SC20-RF threshold
of just 2% (or 5%) from optimal, the total cost of SC20-RF increases
to 38,645 (40,740) node–hours.

The Myopic-RF policy, while seeming to be a reasonable ap-
proach, has consistently worse results than SC20-RF. For a 2 node–
minute mitigation cost, this increase is small, to 36,432 node–hours,
but the gap widens considerably as the mitigation cost increases.
The disappointing results for Myopic-RF arise because although the
output from the RF predictor increases with the likelihood of error,
it is not a reliable probability value, as assumed by Myopic-RF.

The RL approach consistently reduces the total cost to 54% below
Never-mitigate, at 33,843 node–hours. For a 2 node–minute miti-
gation cost, the advance over SC20-RF is mainly due to the lower
mitigation cost, which is approximately 55% lower than that of
SC20-RF. As the mitigation cost increases, a better choice of when
to apply mitigation gives a similar mitigation cost but somewhat
lower total cost. Finally, the Oracle reduces the total cost by 58%
to 31,129 node–hours. The negligible total mitigation cost of the
Oracle shows that the mitigation cost of the other approaches is
almost entirely unnecessary mitigations (false positives).

All results include the cost to train and validate the model,
where applicable. The cost of SC20-RF is “on the order of node–
minutes” [11] and the cost for RL is less than twenty node–hours
per year. The RL agent has a greater training and validation cost
than SC20-RF, but the difference is negligible compared with the
additional saved node–hours. In addition, SC20-RF has a hidden
cost to determine the optimal value of its threshold parameter. This
cost is not quantified in our results, but it could be significant.

In summary, these results show that our RL approach, compared
with the state-of-the-art SC20-RF, reduces the total cost by 5% and
narrows the distance from the optimal Oracle by more than a third.
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Figure 5: Total cost for the three anonymized DRAM man-
ufacturers. Each bar is the sum of UE cost (solid color) and
mitigation cost (with dashes). The RL agent has lower total
cost than the other approaches due to a much lower mitiga-
tion cost. This result is consistent across all DRAM manufac-
turers.

5.2 Time series nested cross-validation
Figure 4 shows the complete results from the time series cross-
validation for MN/All. The 𝑦-axis is again the total cost. The 𝑥-axis
is time, showing a separate set of results for each split, each of
which corresponds to a roughly four-month period during the
MareNostrum 3 operation. The sum across time of the values in
Figure 4 match the 2 node–minute bars of Figure 3. We see that
the relative performance of all six approaches is stable over time.
In all six periods except the first, Never-mitigate consistently has
the highest cost, showing a constant need for some kind of error
mitigation throughout operation. SC20-RF outperforms Always-
mitigate in all of the six periods, due to the much lower mitigation
costs for a normally similar UE cost. Myopic-RF has higher cost
than SC20-RF for all time periods except the second. Finally, RL
matches SC20-RF, within 1.2%, for two periods and is the overall
best realistic approach for four of the six periods, with up to 17%
improvement over SC20-RF.

5.3 Different DRAMmanufacturers
Figure 5 shows results for the three anonymized DRAMmanufactur-
ers and a mitigation cost of two node–minutes. As before, the𝑦-axis
is the total cost across the two-year production time period, as the
sum of the costs of the UEs (solid) and mitigations (dashed). Sepa-
rate results are shown for the whole system (MN/All), as well as per
manufacturer (MN/A, MN/B and MN/C) and their sum (MN/ABC).

The relative effectiveness of the six approaches are broadly simi-
lar across all scenarios considered: whether applied and evaluated
to MareNostrum 3 as a whole or separately to MN/A, MN/B and
MN/C. The MN/ABC results are similar to those for MN/All, but
slightly worse, likely because MN/All allows generalization among
manufacturers whereas MN/ABC does not. We see that RL is sig-
nificantly better than SC20-RF for all scenarios except MN/B, for
which the results are similar.

5.4 RL agent behavior
Figure 6 illustrates the behavior of the RL agent, which helps un-
derstand in which circumstances the agent decides to mitigate. The
𝑥-axis (log scale) is the UE cost input to the RL agent (Equation 3),
which is the CPU time since the job start or the last checkpoint. The
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Figure 6: RL agent behavior: the shade indicates the fraction
of events for which the agent triggers a mitigation as a func-
tion of the potential UE cost (𝑥-axis) and the likelihood of a
UE (𝑦-axis) determined by the RF predictor.

𝑦-axis indicates the probability of a predictable UE. Our agent has
no such probability value, whether as an input, intermediate value
or output. As a proxy the 𝑦-axis therefore shows the probability
output from the state-of-the-art random forest predictor (SC20-RF).
This is not an input to the agent, but it does serve as a measure of
the risk of an upcoming UE. The shade in the chart indicates how
often the agent mitigates in those circumstances, with white mean-
ing that it never mitigates and black that it always mitigates. The
region at the top marked “No data” indicates that these datapoints
are never seen during training. Each bin comprises the relevant
training episodes in the last cross validation split.

For low potential UE costs, below about 100 node–hours, and
low predicted UE probability, below about 50%, the agent initiates
few mitigations (bottom-left part of the chart). As the UE cost
increases, the proportion of mitigations increases, with the agent
usually triggering a mitigation when the UE cost is above about
1000 node–hours, even if the likelihood of a UE is low. Similarly, the
agent usually initiates mitigations when the predicted probability is
above about 70%. When the UE cost and likelihood of a UE are both
high (top-right part of the chart), the mitigation is almost always
performed.

Figure 6 also shows that the agent properly generalizes to very
large potential UE costs. The training data contains a small number
of UE costs exceeding 1000 node–hours, with a maximum of 32,000
node–hours. Nevertheless, the agent consistently chooses to always
mitigate for one and two orders of magnitude greater costs.

5.5 Classical machine learning metrics
Table 2 shows the numbers of true positives (TPs), false nega-
tives (FNs), false positives (FPs) and true negatives (TNs), as defined
in Section 4.4, for all six approaches. It also shows the total number
of mitigations, as well as recall and precision, which are derived
from these numbers.

Never-mitigate never performs a mitigation action (positive), so
it has zero TPs or FPs. Its recall, 𝑇𝑃𝑠/(𝑇𝑃𝑠 + 𝐹𝑁𝑠), is therefore 0%
and its precision, 𝑇𝑃𝑠/(𝑇𝑃𝑠 + 𝐹𝑃𝑠), is undefined. Always-mitigate
has 42 true positives, corresponding to the 42 UEs that have at least
one event in the 1-day prediction window defined for the classical
machine learning metrics. But 25 UEs have no event in the 1-day
prediction window, so from the perspective of the classical machine
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Table 2: Prediction results and classical machine learning metrics for the six approaches. The RL policy is the only approach
that adapts to the current job characteristics, by more frequently performing mitigations when the cost of a UE would be high.

Approach TPs FNs FPs TNs
Mitigations
(TPs+FPs) Recall Precision

Never-mitigate 0 67 0 259,228 0 (0%) 0% n/a
Always-mitigate 42 25 259,228 0 259,270 (100%) 63% 0.02%
SC20-RF 40 27 96,612 162,616 96,652 (37%) 60% 0.04%
Myopic-RF 32 35 132,864 126,364 132,896 (51%) 48% 0.02%
RL

MN4 job distribution 26 41 43,544 215,684 43,570 (17%) 39% 0.06%
UE cost < 100 node–hours 18 49 49,678 209,550 49,696 (19%) 27% 0.04%
100 ≤ UE cost < 1000 node–hours 29 38 86,722 172,506 86,751 (33%) 43% 0.03%
UE cost ≥ 1000 node–hours 41 26 240,155 19,073 240,196 (93%) 61% 0.02%

Oracle 42 25 0 259,228 42 (0%) 63% 100%

learning metrics, they cannot be mitigated and are counted as false
negatives. This leads to a recall of 63%, which is the best possible for
all approaches that perform amitigation only in response to an error
event. Always-mitigate, however, has the lowest precision with a
value of 0.02%, due to the high number of FPs (259,228). SC20-RF
has a slightly lower recall than Always-mitigate, at 60%, but many
fewer FPs, leading to a significantly improved precision of 0.04%.
Compared with SC20-RF, Myopic-RF has a lower recall, at 48% and
a lower precision, at 0.02%, due to the much lower number of TPs.

To understand the behavior of the RL policy in different con-
ditions, we show separate results for the MareNostrum 4 job dis-
tribution (first row) and for three uniformly randomly distributed
ranges of job sizes (three remaining rows). For the MareNostrum 4
job distribution (first row), the overall recall is much lower than
SC20-RF, at 39%, while the precision is much higher, at 0.06%. It
may appear that the RL policy is making a poor tradeoff, due to
the lower number of mitigated UEs (true positives), but this is not
the case, as previously seen in the cost–benefit calculation. For UE
costs less than 100 node–hours (second row), the agent requests
mitigations only when there is either a high probability of a UE or
a high potential UE cost. This leads to the lowest recall of 27% and a
precision of 0.04%. While a higher recall would represent a greater
number of predicted UEs, the relatively small cost of any UEs would
be insufficient to justify the greater number of false positive mitiga-
tion actions. For UE costs between 100 and 1000 node–hours (third
row), mitigation is performed more often, leading to a recall of 43%
and a precision of 0.03%. Finally, for UE costs uniformly distributed
between 1000 node–hours and the maximum job size of 32,000
node–hours (fourth row), RL behaves like Always-mitigate, lead-
ing to a recall of 61% (almost as high as 63% for Always-mitigate)
and a precision of 0.02% (similar to Always-mitigate). Finally, the
Oracle has the highest possible recall, of 63%, which is the same as
Always-mitigate, and the highest possible precision, of 100%, since
all mitigation actions are true positives.

With the exception of Oracle, which has the maximum value for
bothmetrics, recall and precision, it is not possible to conclude, from
these metrics alone, which policy is best. Firstly, precision considers
TPs and FPs to have the same weight, when in reality they differ in
cost by orders of magnitude. Secondly, there is generally a tradeoff
between recall and precision, and an increase in one typically results

in a decrease in the other. RL is the only policy that dynamically
adjusts this tradeoff to optimize the cost–benefit calculation.

5.6 Job size sensitivity analysis
In order to verify the generality of our method on systems with
different job sizes, we repeat the experiment with up to ten times
smaller or ten times larger job sizes. Each experiment, for a different
scaling factor, uses a separately trainedmodel, which corresponds to
the normal use case of training amodel for the particular production
system. The results are the average across all six splits in the time
series nested cross-validation, for the complete system MN/All. In
order to focus on the effect of job size, all results maintain the same
2 node–minute mitigation time as before.

Figure 7a shows the total cost of mitigations and UE errors (𝑦-
axis, log scale), as a function of the job size scaling factor (𝑥-axis,
also log scale). A scaling factor of 1 corresponds to the job distri-
bution in the original MareNostrum 4 job log. As expected, the
cost of the uncorrected errors, and therefore the benefits of error
mitigation, both increase with the job scaling factor. Never-mitigate
has total cost equal to the UE cost, which is directly proportional to
the scaling factor. For scaling factors of 1, 3 and 10, Never-mitigate
has total costs of 74,035, 222,104 and 740,346 node-hours respec-
tively. Always-mitigate reduces the UE cost by a factor of about 2.4,
independent of the scaling factor, but it adds a fixed mitigation cost
of 8642 node–hours (see Section 5.1). For large scaling factors, its
total cost is dominated by the UE cost and is therefore close to pro-
portional to the scaling factor, about 2.4× lower than that of Never-
mitigate. But for job scaling factors less than about 0.2, the high
mitigation cost of Always-mitigate dominates and Never-mitigate
becomes the best static baseline policy. On the large logarithmic
scale covering two orders of magnitude, SC20-RF, Myopic-RF and
RL appear similar. All always perform better than the static base-
line policies, with the benefit of the prediction schemes largest for
moderately smaller job sizes than those of MareNostrum 4. The
RL-triggered mitigation policy has the lowest costs, of all policies
except Oracle, at 32,391, 96,379 and 320,349 node-hours.

Figure 7b focuses on just the mitigation costs incurred by the dif-
ferent approaches, as the job sizes are scaled. The axes are the same
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as for Figure 7a, except that the 𝑦-axis now shows only the miti-
gation cost, in node–hours, on a linear scale. All three prediction-
based approaches, SC20-RF, Myopic-RF and RL adapt to the job size
scaling factor, by incurring a lower mitigation cost when the job
sizes are smaller. For SC20-RF, this adaptation is done by the user
somehow specifying a different optimal threshold parameter. In
the case of Myopic-RF and the RL agent, this adaptation is done
automatically. Nevertheless, we see that the RL agent consistently
achieves a lower mitigation cost than the other realistic approaches.

Various studies from NERSC, NSF and US national labs report
typical HPC job sizes that are two or three orders of magnitude
larger than the jobs used in our evaluation [27, 41, 49, 57]. Given
that we have verified the generality of our method with different
job sizes, we argue that application of our method in these systems
would lead to roughly proportional savings that are two to three
orders of magnitude higher than our results for MareNostrum 3.

Numerous studies considering large-scale HPC systems report
checkpointing overheads of tens of percents of the overall available
node–hours [8, 10, 16, 21, 22, 45, 52, 54, 63], which is considerably
higher than observed in our study. Driven by the needs of large-
scale systems, optimizing the checkpointing interval to reduce over-
heads is an active area of research. To the best of our knowledge,
our study is the first to propose and evaluate an RL adaptive mit-
igation scheme that would lead to significant system performance
gains in HPC systems with a high failure mitigation cost.

5.7 Application completion times
Our study focuses on the system-level impact of DRAM failures and
the potential for the system operator to reduce the number of lost
node–hours. At the same time, error mitigation approaches can also
improve the service delivered to individual users. Wang et al. [63]
and Elliott et al. [21] report an 𝑛-fold reduction in job wall-clock
time, due to the deployment of checkpointing. There is a trade-off
between false positives (mitigation overheads) and false negatives,
which for checkpointing corresponds to restarting from a far-away
checkpoint. This tradeoff clearly motivates the exploration of adap-
tive mitigation policies that adjust to the job and system state. An in-
teresting avenue of future work would be to analyze the application-
level benefits of our proposal, considering application completion
time and its variability under different mitigation approaches.

6 RELATEDWORK
6.1 Corrected DRAM errors
Most of the earlier studies on the classification and prediction of
memory errors focus on corrected DRAM errors [6, 7, 15, 18, 43,
44, 61]. These studies help to understand corrected DRAM error
rates and distributions, and they identify correlations with various
features that are useful for prediction. It is important, however,
to determine how and to what extent this information could con-
tribute to measurable improvements in system reliability. System
reliability is only impacted by UEs [26, 38, 55, 74], and there is no
direct relation between corrected and uncorrected error predic-
tion [25, 35, 47, 56, 59, 74]. It is therefore challenging to modify an
existing CE predictor to predict UEs [18].
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Figure 7: Sensitivity analysis for job size scaling factor.

6.2 Corrected vs. uncorrected DRAM errors
A few studies show that the probability of an uncorrected DRAM
error is higher if the DIMM previously experienced corrected er-
rors [56, 59, 74]. This reasoning is used by system protection mech-
anisms that try to prevent future uncorrected errors using simple
heuristics to retire potentially failing memory pages [19, 30, 39, 62,
67] or replace the affected DIMMs [20, 28, 32, 38, 56]. The recent
large-scale study of Cheng et al. [12], however concludes that UE
failures are hard to predict, since typically only a small number of
CEs occur before these failures and the CEs only manifest within a
short time before the failures happen.

6.3 Uncorrected DRAM errors
The community has more recently applied advanced machine learn-
ing methods to predict uncorrected DRAM errors.

In a 2017 paper, Giurgiu et al. [25] present the first machine learn-
ing model to predict uncorrected DRAM errors. Their random forest
model is based on preceding corrected errors and measurements
from over 100 sensors that monitor the system. The model is de-
signed and evaluated based on event logs from 49,800 IBM servers in
multiple geographical locations during a period of over three years.

Mukhanov et al. [42] explore the importance of workload char-
acteristics, such as IPC and memory bandwidth utilization, on the
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characterization and prediction of DRAM errors. The study is per-
formed on a single server with 72 DRAM chips running under
non-nominal circuit parameters: scaled refresh period, lowered
voltage and increased temperature.

Workload-aware DRAM error prediction is further explored by
Wang et al. [64] in a large-scale study of a cloud datacenter compris-
ing 382,608 servers. three tree-based models. The results show that
considering the workload’s used memory bandwidth and latency
improves upon a baseline prediction based only on the platform
characteristics, the number of CEs and their location.

These error prediction models are evaluated using standard eval-
uation metrics, such as precision and recall. Such metrics allow
comparison with the state of the art in machine learning, but they
do not allow us to conclude how well the predictor would serve to
reduce the costs of UE errors. Metrics like precision put the same
weight on multiple different prediction outcomes (true/false posi-
tives/negatives), whose costs differ by orders of magnitude, and the
recall metric ignores false positives, which incur costly mitigation
measures. Overall, these standard data prediction metrics are insuf-
ficient to evaluate HPC failure predictors, and their use should be
complemented with a cost–benefit analysis.

Boixaderas et al. [11] is the first study that performs such an
analysis. It compares the system resources needed for model train-
ing, failure prediction and mitigation against the compute time that
is saved by successful failure mitigation. The study develops and
compares six machine learning classifiers and it proposes an error
prediction method based on random forest. The method is trained
and evaluated using logs from the MareNostrum supercomputer.

Two recent studies from Internet servers and the cloud domain
use a similar cost–benefit calculation for DRAM failure prediction.
Li et al. [36] analyze DRAM errors from a ByteDance Internet fa-
cility comprising around 100,000 Intel SkyLake and Cascade Lake
servers. The study proposes three simple UE predictors based on
the CE history and the details of the system’s ECC algorithms to
predict the risky CEs. The ECC can correct risky CE patterns with
limited assured coverage, so a small variation in a risky CE will
likely result in a UE. The authors show cost–benefit improvements
when risky CE patterns are considered.

Zhang et al. [73] predict the loss of node availability due to
DRAM failures for the Alibaba Cloud Elastic Compute Service with
more than half a million nodes. In addition to UEs, the study also
analyzes node unavailability caused by CE storms, high CE rates
that saturate system error handling mechanism and cause a node to
become unresponsive. The authors predict DRAM-caused system
failures based on a 18 heuristic rules combined with four binary
classification ML models.

The three previous studies create static prediction models that
don’t adapt to the current state of the system. This is problematic in
high-performance computing because the failure cost varies among
jobs whose size and duration can differ by orders of magnitude. Our
method dynamically adapts to the current system state, learning
a policy that takes account of the running job characteristics. By
avoiding mitigation actions when the cost of a UE would be low, it
reduces the total cost by 5%, in comparison with Boixaderas et al.,
which uses similar logs from the same supercomputer as our study.

7 CONCLUSIONS
This paper presented and evaluated a reinforcement learningmethod
that anticipates and triggers themitigation of DRAMuncorrected er-
rors. Themethod is trained and evaluated using two years of produc-
tion error and job logs from the MareNostrum supercomputer. Our
cost–benefit analysis shows that the adaptive mitigation method
reduces the lost compute time by 54%, an overall saving of 20,000
node–hours per year. By adapting to the current job size, rather than
using a static cost estimate, the saved node–hours is just 6% below
the optimal Oracle method, reducing the distance from optimal by
more than a third compared with the state-of-the-art random forest
method. We verify the generality with different job sizes and argue
that application of our method on larger HPC systems with larger
HPC job sizes would lead to roughly proportional savings two to
three orders of magnitude higher than observed on MareNostrum.

All source code is released as open source. Since the method
has no user-supplied parameters, it can be easily applied to other
large-scale clusters without customization or tuning. We would
encourage the community to evaluate and further improve the
method on their systems and share their findings.
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