
Aggregating and Managing Memory Across
Computing Nodes in Cloud Environments

Luis A. Garrido and Paul Carpenter

Barcelona Supercomputing Center,
C/ Jordi Girona. 31, 08034 Barcelona, Spain
{luis.garrido,paul.carpenter}@bsc.es

http://www.bsc.es

Abstract. Managing memory capacity in cloud environments is a chal-
lenging problem, mainly due to the variability in virtual machine (VM)
memory demand that sometimes can’t be met by the memory of one
node. New architectures have introduced hardware support for a shared
global address space that, together with fast interconnects, enables re-
source sharing among multiple nodes. Thus, more memory is globally
available to a computing node avoiding the costly swaps or migrations.

This paper presents a solution to aggregate the memory capacity of mul-
tiple nodes in a virtualized cloud computing infrastructure. It is based
on the Transcendent Memory (Tmem) abstraction and uses a user-space
process to manage the memory available to a node, and distribute the
aggregated memory across the computing infrastructure. We evaluate
our solution using CloudSuite 3.0 benchmarks on Linux and Xen.

Keywords: Virtualization; Simulation, Modeling and Visualization

1 Introduction

Current data centres use large numbers of servers provisioned with their own
computing resources. These servers share none of their resources, and they com-
municate over an Ethernet (or similar) network. Newer system architectures try
to improve over this resource isolation approach, allowing servers to share their
resources through the memory hierarchy. These systems provide a shared global
physical address space, accessing memory at low latency using very fast inter-
connects. These systems are composed of coherence islands (nodes), with cache
coherency enforced within an island, with no global hardware coherence.

Each node’s physical memory capacity is distributed by the hypervisor among
one or more Virtual Machines (VMs). The demand for memory resources gen-
erated by the VMs vary due to the different workloads they execute over time.
To improve utilization of the memory capacity of the node, physical memory is
often overcommitted, which causes a VM to have less memory than the amount
it was configured at boot time. The physical memory given to a VM is usually
adjusted using memory ballooning and/or memory hotplug. Xen’s Transcendent



2 Aggregating and Managing Memory Across Computing Nodes

Memory (Tmem) [1] is another way to make memory capacity available to the
VMs, through a paravirtualized put–get interface.

This paper presents a mechanism, called GV-Tmem (Globally Visible Tmem),
that extends the hypervisor to share the memory capacity of the nodes across
the computing infrastructure. GV-Tmem introduces minimal changes to the hy-
pervisor, keeping it small, secure and self-contained. Most of the complexity is
in a user-space memory manager process running in the privileged domain that
supports memory management policies, inter-node communication and dynamic
addition and isolation of nodes. Our main contributions are:

1. A software architecture to aggregate memory across nodes using Tmem.
2. A two-tier mechanism for allocation and management of aggregated memory.

This paper is organized as follows. Section 2 gives the necessary background
on virtualization, Tmem and coherence islands. Section 3 explains GV-Tmem.
Section 4 describes the experimental methodology and Section 5 shows our re-
sults. Section 6 compares with related work and Section 7 concludes the paper
and outlines future work.

2 Background

2.1 Virtualization In IaaS Clouds

Cloud computing provides on-demand access to an apparently unlimited pool of
computing resources. There are multiple cloud computing service models, but the
most fundamental is Infrastructure-as-a-Service (IaaS). IaaS shares the underly-
ing hardware memory resources among customers using virtualization software
known as a hypervisor.

Virtualization and Memory Management The hypervisor virtualizes the
physical resources, including memory, of the node. It creates and manages Vir-
tual Machines (VMs), each of which runs its own (guest) Operating System
(OS). When a VM is created, the hypervisor allocates to it a portion of the
physical memory capacity. If a VM later requires more memory (memory under-
provisioning) it will generate accesses to its (virtual) disk device, even if some
of the node’s memory is unassigned or sits idle in a VM that does not need it.
When a VM has more memory than needed (memory overprovisioning), then
the memory is underutilized and will be used for disk caches. In both cases, it
is beneficial to re-allocate memory, making it available to the VM that needs it.

There are solutions for dynamically re-allocating memory among VMs, in-
cluding memory ballooning and memory hotplug, both implemented in the Xen
and Linux. These mechanisms have been widely deployed in current data cen-
tres, with significant performance benefits in terms of higher memory utilization.
However, they do not provide adequate interfaces to aggregate memory capacity
across multiple nodes.



Aggregating and Managing Memory Across Computing Nodes 3

State-of-the-Art Transcendent Memory Transcendent memory (Tmem) [1]
is another memory management mechanism that pools the idle or unassigned
physical pages. Tmem is abstracted as a key–value store in which pages are ac-
cessed through a put–get interface, a put operation to write a page in the store
that becomes mapped to the VM that issued it, and a get operation to read pages
back. The Tmem interface supports also flush-page and flush-object operations,
which return pages to the tmem pool. In order to enable Tmem, the VMs need
to have a Tmem kernel module (TKM) which handles all accesses to the Tmem
pages on behalf of the VM by issuing hypercalls to the hypervisor.

2.2 Hardware Support for Coherence Islands

In systems such as Venice [2] and EUROSERVER [3] (based on ARM), the
processors in each node are connected in clusters via a local cache-coherent
interconnect to local resources. Remote memory is visible through the global
physical address space, and communication across nodes is achieved through an
inter-node interface and global interconnect. Other examples of similar architec-
tures include dRedBox [4] and Beehive [5]. The essential characteristics of these
architectures are:

– Each node executes its own hypervisor and OSs.
– Global physical memory address space with low-latency access.
– Routing is based on the global physical address (e.g. high-order bits).
– Fast communication is provided across the nodes of the system.

3 GV-Tmem design

GV-Tmem consists of three software components:

– Extended Xen Hypervisor (Section 3.1)
– Tmem Kernel Module in the kernel of all domains (Section 3.2)
– Memory Manager (MM) in user space in Dom0 (Section 3.3)

3.1 Xen Hypervisor with Extensions

The hypervisor extensions for GV-Tmem are minimum and localized in the
Tmem subsystem. First, the hypervisor enforces the memory allocation con-
straints determined by the MM. Second, it allocates and deallocates physical
pages and passes ownership of blocks of pages in and out of the hypervisor.
Third, it collects information of tmem utilization that sends to the MM.

Enforcing local per-VM memory constraints: The hypervisor con-
strains the Tmem consumption of its VMs, based on the allocation determined
by the MM. The MM specifies the maximum number of pages a VM can use.

Page allocation and transfer of ownership: GV-Tmem ensures that
each physical page is owned by at most one hypervisor. Tmem pages owned by
a hypervisor are allocated using a zoned Buddy allocator, with a zone for each
node from which it has ownership of at least one page.



4 Aggregating and Managing Memory Across Computing Nodes

A Tmem put operation allocates the closest free page from the allocators. A
Tmem flush operation causes a page to be returned to the corresponding Buddy
allocator. A Grant hypercall is used when the MM receives ownership of a list of
blocks (each an appropriately-aligned power-of-two number of pages). These are
added as free blocks to the appropriate Buddy allocator. In contrast, a Request
hypercall is used to release ownership of pages on behalf of another node.

Memory statistics: The hypervisor collects information about the tmem
utilization of the VMs, such as number of put, get and flush operations, and how
many of them fail or succeed. The information gathered needs to be minimum
to avoid communication overhead from the hypervisor to the MM.

3.2 Tmem Kernel Module (TKM)

Interfacing to the Tmem client interface requires a kernel module in each VM,
but the kernel module in the privileged domain (Dom0) acts only as an interface
between the hypervisor and the node’s MM (using netlink sockets).

3.3 Dom0 User-space Memory Manager (MM)

Each node has a user-space Memory Manager (MM) in Dom0. The MMs perform
most of the work of GV-Tmem by cooperating to:

1. Distribute memory owned by each node among its guests
2. Distribute global memory capacity among nodes
3. Implement the flow of page ownership among nodes
4. Enable nodes to join and leave, and handle failures

Joining the GV-Tmem system There is one MM Master (MM–M) that
controls the system and distributes the global memory capacity. The messages
passed among the MMs are listed in Table 1. A node requires a configuration
file, which provides the network addresses of all nodes, their mappings to a node
ID and credentials to establish secure connections. When a node R wishes to
join the GV-Tmem system, it sends Register to the MM–M (see Table 1). The
MM–M sets R’s state to Active. Then it sends a Enable-Node(R,1) message to
all registered nodes. Every node maintains a bitmap of the active nodes.

Distributing memory owned by a node among guests: The local MM
determines the maximum number of pages for each VM. This is done using
a policy that determines this maximum based on the statistics sent from the
hypervisor. This is the first tier of the memory management strategy. Pages are
distributed subject to a memory consumption limit, set by the MM–M using the
Mem-Limit message.

Distributing global memory capacity among nodes: Nodes in the Ac-
tive state, regularly send Statistics messages to the MM–M. Based on these and
the global memory policy, the MM–M redistributes the memory among nodes by
sending the Grant-Any message to the donor node, which is a request to transfer
ownership of a number of free physical pages to a given node. This is the second
tier of the memory management strategy.



Aggregating and Managing Memory Across Computing Nodes 5

Command Direction Description Slave
state

Distribution of global memory capacity
Statistics(S) SL→MT Send node statistics S to Master A
Grant-Any(n, x) MT→SL Request grant of n pages to slave x A
Grant-Return(n, x) MT→SL Request grant of n pages to slave x A
Force-Return(x) MT→SL Disable node x and return pages located at x A
Mem-Limit(n) MT→SL Limit allocated pages to store local data A

Flow of page ownership
Grant(b, · · ·) SL→SL Transfer ownership of blocks of pages A

Node state changes
Register SL→MT Register a new node I→A
Leave-Req SL→MT Node requests to leave or shutdown A→L
Leave-Notify MT→SL MM–M notifies that the recipient has left L→I
Enable-Node(x, e) MT→SL Accept (e = 1) or reject (e = 0) pages at x A

Table 1. MM message types. SL: slave, MT : master, I: Inactive, A: Active, R: Recov-
ery, L: Leaving

Implementing flow of page ownership: The MM–M rebalances memory
capacity, without knowing the physical addresses. Ownership of physical ad-
dresses is transferred in a peer-to-peer way using Grant messages.

Leaving the GV-Tmem system To cleanly shutdown a node R that is in
GV-Tmem, the following procedure must be followed.

1. Node R sends a Leave-Req message to the MM–M.
2. Upon receiving the Leave-Req, the MM–M sets the node to Leaving state and

sends Force-Return(R) to all nodes. The nodes return the pages at R that
they own and will reject any pages received in future Grant messages.

3. Node R frees all pages used by Tmem and returns ownership of all remote
pages to their home nodes.

4. Periodically, each node sends Grant messages to node R to return ownership
of the pages that it had borrowed.

5. Once the MM–M has received Statistics messages from all nodes indicating
that R is disabled and that it owns no pages at R, the MM–M moves R to
Inactive and sends Leave-Notify to R.

6. At this point, the node R may shutdown.

Hardware Support for Memory Aggregation For proper functioning,
GV-Tmem requires the underlying hardware to provide the following features:

1. A fast interconnect, providing a synchronous interface across the system.
2. Direct memory access from the hypervisor to all the memory available.
3. Remote access to a node’s pages is disabled on hardware boot.
4. Given a physical address, it must be possible to extract the Node ID.



6 Aggregating and Managing Memory Across Computing Nodes

Node CPU Frequency Memory

Node 1 AMD FX Quad-Core 1.4 GHz 6 GB
Node 2 Intel Core i7 2.10 GHz 8 GB
Node 3 Intel Xeon 2.262 GHz 64 GB

Table 2. Hardware characteristics

Scns. VM Parameters Description

Scn. 1 VM1, VM2: 768 MB
RAM, 1 CPU; VM3:
1 GB RAM, 1 CPU

All VMs execute in-memory-analytics, sleep 5 seconds
and then execute it again.The data set used is from [7].

Scn. 2 VM1, VM2, VM3:
512 MB RAM, 1 CPU

VM1 and VM2 execute usemem, and VM3 starts when
VM1 allocates 640 MB.

Scn. 3 VM1, VM2: 512 MB
RAM, 1 CPU

Every VM executes graph-analytics once. They use the
dataset provided by [8], [9], [10].

Table 3. List of scenarios used for benchmarking

4 Experimental Methodology

We tested GV-Tmem in a platform consisting of three nodes. Every VM runs
Ubuntu 14.04 with Linux kernel 3.19.0+ as the OS, and Xen 4.5. The nodes
communicate using Ethernet TCP/IP sockets. Node 2 acts as the Master node
and executes no VMs. Table 2 summarizes the hardware properties of the nodes.

The shared global address space was emulated using the node’s local memory.
We modified Xen to start up using a portion of the physical memory capacity,
equalling the emulated memory capacity of the node. The rest of the node’s
memory capacity was reserved to emulate remote data storage. Whenever the
hypervisor performs an “emulated” remote access, we add a delay in the hyper-
visor lasting 50 µs to model hardware latency.

We evaluate GV-Tmem using CloudSuite 3.0 [6]. We also designed a mi-
crobenchmark called usemem, which allocates a varying amount of memory,
starting with 128 MB. Every time it allocates memory, it performs a series of
write/read operations while checking the correctness of the values read in the
allocated memory. We execute at most three DomUs simultaneously, and refer
to each set of DomUs as a scenario (or Scn). Table 3 shows the scenarios used.
For Scns. 1 and 3, all nodes have 1 GB of Tmem capacity. For Scn. 2, Node 2
has 1 GB of Tmem, while Nodes 1 and 3 have 384 MB.

This paper uses three memory management policies:

– greedy-local: Default policy used in Tmem with only local memory, which
gives memory away on demand. No maximum values are set to limit the
amount of memory taken by a VM.

– greedy-remote: An extended version of greedy-local using remote memory.
– TTM: A two-tier memory management strategy that allocates memory lo-

cally for each VM (first-tier) depending on the node’s statistics, and issues



Aggregating and Managing Memory Across Computing Nodes 7

a) Node 1 b) Node 3

Fig. 1. Running time for Scn. 1 in nodes 1 and 3. Time is in seconds (less is better).

c) TTM (P=2.0%)b) greedy-remotea) greedy-local

Fig. 2. Tmem capacity (nod-tmem) obtained by every VM in node 3 for Scn. 1. The
label target-VM3 refers to the target allocation of VM3.

requests for remote memory (second-tier) depending on the perceived mem-
ory pressure. The pages allocated and deallocated to a VM are increased by
a percentage %P of the pages owned by the node (local or remote).

5 Results

Results for Scenario 1 Figure 1 shows the average running times of each
VM for Scn. 1. The running time improves by an average of 19.4% and 23.5%
in nodes 1 and 3, respectively, when going from greedy-local to greedy-remote.
When implementing TTM with P = 2.0%, there is further improvement of 6.0%
and 4.0% over greedy-remote, demonstrating the need to implement memory
management policies when there is significant memory pressure.

Figure 2 shows the amount of Tmem capacity that each VM is able to use for
the three policies mentioned in node 3. With greedy-local (Figure 2(a)), VM3 in
both iterations cannot obtain a fair share of the available Tmem capacity. With
greedy-remote (Figure 2(b)), the VMs are able to get more total Tmem, but
because of the lack of memory management policies, some VMs are unable to
obtain a fair share of Tmem. With TTM (Figure 2(c)), every VM is ensured a
fair amount of the available Tmem, demonstrating that TTM is able to ensure
fairness regarding the VMs’ allocation of tmem, improving the running times.

Results for Scenario 2: the Usemem Scenario The average running
times for Scn. 2 are shown in Figure 3. When enabling greedy-remote, VM3,



8 Aggregating and Managing Memory Across Computing Nodes

a) Node 1 b) Node 3

Fig. 3. Running time for Scn. 2 for nodes 1 and 3.

c) TTM (P=2.0%)a) greedy-local b) greedy-remote

Fig. 4. Tmem capacity (nod-tmem) obtained by every VM in node 3 for Scn. 2.

VM2 and VM1 reach an average performance improvement of 63%, 20% and
13% respectively. When TTM is enabled, VM3 shows a maximum and minimum
improvement of 27% and 5.5% in node 1, respectively, and a maximum and
minimum improvement of 51% and 9.3%, respectively, in node 3. However, VM1
and VM2 both experience a performance reduction.

Figure 4 shows the remote memory capacity that each VM is using for the
three policies. Figure 4(a) shows that VM3 struggles to obtain memory pages
using greedy-remote. This is similar to the case in Figure 2(a), in which the VM3
was unable to reach its fair share of Tmem. With TTM, VM3 obtains a larger
amount of Tmem, improving its performace. Here, VM3’s improvement comes at
the expense of VM1 and VM2, balancing the Tmem pages every VM can have.

Results for Scenario 3 The average running times for Scn. 3 are shown in
Figure 5. In this case, node 1 improves by a maximum and a minimum of 92.3%
and 92.1%, respectively, when comparing greedy-local to greedy-remote. When
enabling TTM, it improves by a maximum and a minimum of 6.0% and 0.9%.

In node 3, there’s a maximum and mininum improvement of 84.4% and 83.1%
when comparing greedy-local to greedy-remote. However, performance degrades
by 10% with TTM compared to greedy-remote. When enabling TTM, the VMs
require more memory but TTM enforces limits, although flexible, on the memory
they can take, similar to what occurs in Scn. 2 for VM1 and VM2. When disabling
TTM, the VMs take memory unrestrained thus performing slightly better than
TTM. This highlights the need for more adaptive memory management policies.



Aggregating and Managing Memory Across Computing Nodes 9

a) Node 1 b) Node 3

Fig. 5. Running time for Scn. 3 for nodes 1 and 3.

6 Related Work

Zcache [11] is a backend that provides a compressed cache for swap and clean
filesystem pages. RAMster [11] is an extension of zcache that uses kernel sockets
to store pages in the RAM of remote nodes. In contrast, our approach grants and
releases blocks of pages at greater granularity, reducing the amount of software
communication between nodes, since we exploit the shared global address space.
RAMster is implemented in the kernel whereas our approach uses a user-space
process in a privileged VM, providing greater flexibility for memory manage-
ment. RAMCloud [12] is a POSIX-like filesystem in which all data is stored in
DRAM across nodes, placing the data in one or more nodes, introducing issues
of global coherency and exclusivity of access. Our solution aggregates memory
exploiting a global shared address space, without requirements for global co-
herency. Hecatonchire [13] achieves resource aggregation by decoupling virtual
resource management from physical resources. It uses a mediation layer that ar-
bitrates how applications access resources. We differ from [13] by making memory
available to the hypervisor through a user-space process.

7 Conclusions and Future Work

This paper introduces GV-Tmem, a method that exploits Tmem to share mem-
ory capacity across multiple nodes. We evaluated GV-Tmem using CloudSuite,
obtaining up to 51% performance improvement using simple memory manage-
ment policies. The results demonstrate the effectiveness of GV-Tmem, and the
need for two-tier memory management strategies within and across nodes.

Future work will investigate how to integrate GV-Tmem with other resource
management mechanisms of other cloud software. It is also necessary to develop
more sophisticated two-tier global memory management policies, in order to
improve adaptivity and responsiveness to changes in memory demand.

8 Acknowledgements

This research has received funding from the European Unions 7th Framework
Programme (FP7/20072013) under grant agreement number 610456 (Euroserver).



10 Aggregating and Managing Memory Across Computing Nodes

The research was also supported by the Ministry of Economy and Competitive-
ness of Spain under the contract TIN2012-34557, HiPEAC-3 Network of Excel-
lence (ICT- 287759), and the FI-DGR Grant Program (file number 2016FI B
00947) of the Government of Catalonia.

References

1. Magenheimer, D., Mason, C., McCracken, D., Hackel, K.: Transcendent memory
and Linux. In: Proc. of the Linux Symposium, pp. 191–200. Citeseer, 2009

2. Dong, J., Hou, R., Huang, M., Jiang, T., Zhao, B., Mckee, S., Wang, H., Cui, X.,
Zhang, L.: Venice: Exploring Server Architectures for Effective Resource Sharing.
In: IEEE Intl. Symp. on High-Performance Computer Architecture (HPCA), 2016.

3. Durand, Y., Carpenter, P., Adami, S., Bilas, A., Dutoit, D., Farcy, A., Gaydadjiev,
G., Goodacre, J., Katevenis, M., Marazakis, M., Matus, E., Mavroidis, I., Thomson,
J.: Euroserver: Energy Efficient Node For European Micro-servers. In: 17th Euromi-
cro Conference on Digital System Design (DSD), pp. 206–2013. IEEE (2014).

4. Katrinis, K., Syrivelis, D., Pnevmatikatos, D., Zervas, G., Theodoropoulos, D.,
Koutsopoulos, I., Hasharoni, K., Raho, D., Pinto, C., Espina, F., Lopez-Buedo,
S., Chen, Q., Nemirovsky, M., Roca, D., Klosx, H., Berends, T.: Rack-scale Disag-
gregated cloud data centers: The dReDBox project vision. In: Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE (2016).

5. Thacker, C.: Beehive: A many-core computer for FPGAs. In: MSR, Silicon Valley.
2010.

6. Ferdman, M., Adileh, A., Kocberber, O., Volos, S., Alisafaee, M., Jevdjic, D., Kay-
nak, C., Popescu, A. D., Ailamaki, A., Falsafi, B.: Clearing the clouds: a study of
emerging scale-out workloads on modern hardware. In: Proc. of the 17th Intl. Conf.
on Architectural Support for Programming Languages and Operating Systems, pp.
37–48. ACM, England (2012).

7. Harper, F. M., Konstan, J.A.: The MovieLens Datasets: History and Context. In:
ACM Trans. on Interactive Intelligent Systems, pp. 19:1-19:19. ACM, USA (2015).

8. Rossi, R. A., Ahmed, N. K.: soc-twitter-follows - Social Networks. http://

networkrepository.com/soc-twitter-follows.php.
9. Ross, R.A., Ahmed, N.K.: The Network Data Repository with Interactive Graph

Analytics and Visualization. In: Proc. of the 29th AAAI Conference on AI. 2015.
10. Ross, R.A., Ahmed, N.K.: An Interactive Data Repository with Visual Analytics.

In: SIGKDD Explor., vol 17, no. 2, pp. 37–41. 2016.
11. Magenheimer. D.: Zcache and RAMster (oh, and frontswap too) overview and some

benchmarking. https://oss.oracle.com/projects/tmem/dist/documentation/

presentations/LSFMM12-zcache-final.pdf. 2012
12. Ousterhout, J., Agrawal, P., Erickson, D., Kozyrakis, C., Leverich, K., Mazières, D.,

Mitra, S., Narayanan, A., Parulkar, G., Rosenblum, M., Rumble, S., Stratmann, E.,
Stutsman, R.: The case for RAMClouds: scalable high-performance storage entirely
in DRAM. In: SIGOPS Operating Systems Review, vol. 43, pp. 92–105. ACM (2010).

13. Svärd, P., Hudzia, B., Tordsson, J., Elmroth, E.: Hecatonchire: Towards Multi-
host Virtual Machines by Server Disaggregation. In: Euro-Par International Parallel
Processing Workshops, pp. 519–529. Springer International Publishing, Portugal
(2014).


