Toward Developing a Unimem OFI Provider for MPI Support

Kyunghun Kim, Antonio J.
Pena, Paul Carpenter

Barcelona Supercomputing Center (BSC)
first.last@bsc.es

ABSTRACT

OpenFabrics Interfaces (OFI) is a unified abstraction of fabric net-
work hardware for high-performance computing (HPC). Recently,
HPC runtimes such as MPICH have been written on top of OFI’s
libfabric APL In this work we present our ongoing efforts toward
developing an OFI provider for the Unimem architecture to offer
efficient MPI capabilities on this emerging technology. The MPICH
CH4-based runtime running the current version of our OFI provider
attains 14.47 ps latency for small messages and 360.59 MB/s peak
bandwidth for large messages on a prototype Unimem board.

1 INTRODUCTION

Unimem is an ARM-based exascale architecture for high perfor-
mance computing. As the name Unimem suggests, this architec-
ture provides unified memory addressing across multiple nodes
and it fits very well with the PGAS (Partitioned Global Address
Space) model. However, there is certainly demand for MPI (Message
Passing Interface) support on Unimem-based systems, due to the
ever-lasting omnipotent MPI ecosystem. In this work we detail our
efforts toward providing an efficient MPI runtime for the Unimem
architecture.

MPTI is a de-facto standard for high-performance cluster comput-
ing. During the more than 25 years of history of MPI, there have
been a significant number of efforts on porting and optimizing MPI
implementations to several high-performance networking tech-
nologies. In order to support multiple of these interconnects, major
MPI implementations, such as MPICH or Open MPI, engineered a
modular structure. The current trend from MPI runtimes to support
multiple networking hardware, however, is to leverage third-party
middleware for low-level networking abstraction, such as libfabric
or UCX.

Libfabric is the core component of the OpenFabrics Interface
(OFI) [2]. OFI is a framework to export fabric communication ser-
vices, and libfabric provides a unified user-space application pro-
gramming interface (API), which is typically used by frameworks
such as MPI or SHMEM, whereas each hardware vendor implements
its OFI provider to support its specific functionality.

Following the state—of—the-art practice, our solution to provide
an efficient and fully-functional MPI runtime for the Unimem archi-
tecture is developing an OFI provider, which is initially targeting
the under-development MPICH CH4 initiative, due to our famil-
iarity with this software project. We started implementing only

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

EuroMPI’18, September 2018, Barcelona, Spain

© Copyright held by the owner/author(s).

Polydoros Petrakis, Manolis

Ploumidis, Nikolaos Dimou
Foundation for Research and Technology
(ppetrak,ploumid,maraz)@ics.forth.gr

Yanfei Guo, Kenneth Raffenetti,

Pavan Balaji
Argonne National Laboratory
(yguo,raffenet,balaji)@anl.gov

the minimum set of OFI features mandatory to operate MPICH
CH4, in order to subsequently apply performance optimizations. In
this work we describe our initial design and implementation, along
with the first optimizations we developed. We also provide an early
performance evaluation.

2 BACKGROUND
2.1 Unimem APIs

Based on the Unimem architecture, Unimem user-space libraries
offers two user-level APIs: virtualized mailboxes for low latency
atomic message delivery and RDMA capabilities. The virtualized
mailbox (vmbox) exposes a hardware queue for small data transfers,
which is useful to deploy control messages. This mailbox transfers
192-bit fixed size messages to a given node in the network.

Unimem userspace library offers RDMA capabilities. Unimem
DMA supports direct transfers from memory of one node to an-
other node and guarantees high throughput. There are two main
restrictions for Unimem DMA transfers due to hardware design:
(1) since the Unimem architecture supports RDMA only for a spe-
cific memory address range, it is necessary to allocate buffers for
transfers with a special function provided by the Unimem DMA
API; and (2) before performing an RDMA read or write to a certain
remote virtual address, the remote address should be registered to
the local RDMA engine to prepare the route for the transfer.

2.2 libfabric for MPICH

libfabric is a generic framework aimed at covering functionality
from a wide range of fabric hardware. It is designed in a modular
fashion, where providers are free to implement the different existing
modules. Before a libfabric user may leverage the functionality of
a given module, it must query the implementation for specific
support. MPICH checks for the OFI provider capabilities during the
initialization process of the OFI netmod.

A fully-functional MPICH CH4 OFI netmod only requires the sup-
port of FI_MSG—basic message passing—and the FI_MULTI_RECV
feature, which allows receiving multiple messages within a single
large receive buffer. With these minimal libfabric features, we can
operate MPICH entirely in Active Message mode, which provides a
fully functional MPI implementation, with the tradeoff for overhead
from the lack of native one-sided support, which we will target in
future work.

3 DESIGN AND IMPLEMENTATION

Since Unimem DMA supports RMA read and write for dmable
buffers only—those allocated through the alloc_dmable_buf Uni-
mem allocator function—we started adding support for any type
of user-provided buffer, including those allocated via any other



EuroMPI’18, September 2018, Barcelona, Spain

Latency (us)
N
o

0 1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K
Message size (byte)

#— Bounce Buffer Direct Copy

Kyunghun Kim et al.

Bandwidth (MB/s)

256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M
Message size (byte)

#— Bounce Buffer Direct Copy

Figure 1: Left: Latency performance from osu_latency benchmark. Right: Bandwidth performance from osu_bw benchmark.

functions (non-dmable), focusing on functionality instead of per-
formance. Hence, we implemented first the slow path using inter-
mediate dmable bounce buffers at OFI provider level, leveraging
the following operations: (1) copy from user buffer to sender-side
bounce buffer, (2) RMA transfer from sender bounce buffer to re-
ceiver bounce buffer, (3) copy from receiver bounce buffer to MPI
active message buffer, and (4) copy from receiver bounce buffer to
user buffer.

We implemented the basic features of an OFI provider: fabric,
domain, and endpoints. Our OFI provider supports connection-less
endpoint type FI_RDM, required by MPICH, and manages connec-
tions for each node internally. We also implemented the basic nec-
essary OFI constructs: event queue, completion queue, and address
vector.

After attaining a fully-functional OFI provider under MPICH
CH4, we started implementing optimizations. The mandatory re-
mote virtual address registration described in Section 2.1 requires
more than 10 ps. Since registering remote target buffers for each
transfer poses an unbearable overhead for HPC use, we imple-
mented a registration cache. In addition, we removed one of the two
data copies at the receiver side from the naive implementation by
allocating MPI active message buffers as dmable and exposing them
to OFL, which significantly improved latency as shown in Section 4.

4 EVALUATION

We measured the performance of our current implementation with
the OSU microbenchmarks [4]. Figure 1 shows the results of osu_-
latency and osu_bw. By preventing the extra copy on the receiver
side described in Section 3 we were able to significantly improve
latency, moving from 23.41 ps to 14.47 us for 0-byte transfers while
reaching a peak bandwidth of 360.59 MB/s.

However, this implementation still features a significant over-
head compared to the performance of raw vmbox (< 1 us) and
DMA transfers (> 1 GB/s), mainly due to the absence of support for
native RMA and direct transfers from dmable user buffers, which
we leave for future work.

5 RELATED WORK

There have been many efforts on developing optimized MPI imple-
mentations for a specific networking architecture. To name a few,
we can find a high-performance RDMA-based MPI implementa-
tion over InfiniBand, the precursor of MVAPICH [3], or a Portals 4

netmod for MPICH [5]. On the OFI approach, we may find an ex-
ample in the implementation of a GNI OFI provider for the Cray
XC dragonfly network and associated uGNI software stack [1].

6 CONCLUSIONS

We are developing an OFI provider for the Unimem architecture.
We utilized virtualized mailbox for control messages and Unimem
DMA to transfer message bodies to implement our message passing
protocol. We applied our OFI provider to the MPICH CH4 runtime
and evaluated its performance with OSU microbenchmarks. Our
current implementation features 14.47 ps one-sided latency for
zero-sized messages and 360.59 MB/s peak bandwidth for large
messages.

For future work we need additional optimizations. For example,
small enough messages could be transferred by directly writing to
pre-allocated buffers in the receiver side (eager transfers), instead
of ping-pong RTS/CTS control messages among nodes (rendezvous
transfers). It is also possible to send smaller messages embedded
within a single vmbox transfer. Supporting native RMA will further
increase latency and bandwidth.

ACKNOWLEDGMENTS

This research is part of a project that has received funding from the
European Union’s Horizon 2020 research and innovation program
under grant agreements No. 754337, 749516, and 671578. This mate-
rial includes support by the U.S. Dept. of Energy, Office of Science,
Advanced Scientific Computing Research (SC-21), under contract
DE-AC02-06CH11357.

REFERENCES
[

Sung-Eun Choi, Howard Pritchard, James Shimek, James Swaro, Zachary Tiffany,
and Ben Turrubiates. 2015. An implementation of OFI libfabric in support of
multithreaded PGAS solutions. In 9th International Conference on Partitioned
Global Address Space Programming Models (PGAS). IEEE, 59-69.

Paul Grun, Sean Hefty, Sayantan Sur, David Goodell, Robert D. Russell, Howard
Pritchard, and Jeffrey M. Squyres. 2015. A brief introduction to the OpenFabrics
interfaces—A new network API for maximizing high performance application
efficiency. In 23rd Annual Symposium on High-Performance Interconnects (HOTI).
Jiuxing Liu, Jiesheng Wu, and Dhabaleswar K Panda. 2004. High performance
RDMA-based MPI implementation over InfiniBand. International Journal of
Parallel Programming 32, 3 (2004), 167-198.

OSU Micro-Benchmarks. 2018. Osu network-based computing laboratory. http:
//mvapich.cse.ohio-state.edu/benchmarks. (2018).

[5] K. Raffenetti, A. J. Pefia, and P. Balaji. 2015. Toward implementing robust support
for Portals 4 networks in MPICH. In 15th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid). 1173-1176.

—_
&,

[3

[4


http://mvapich.cse.ohio-state.edu/benchmarks
http://mvapich.cse.ohio-state.edu/benchmarks

	Abstract
	1 Introduction
	2 Background
	2.1 Unimem APIs
	2.2 libfabric for MPICH

	3 Design and Implementation
	4 Evaluation
	5 Related Work
	6 Conclusions
	Acknowledgments
	References

