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d.pleiter@fz-juelich.de
5 Foundation For Research & Technology - Hellas (FORTH)

{maraz, nkallima}@ics.forth.gr
Abstract. Various servers with different characteristics and architectures
are hitting the market, and their evaluation and comparison in terms of
HPC features is complex and multi-dimensional. In this paper, we share
our experience of evaluating a diverse set of HPC systems, consisting
of three mainstream and five emerging architectures. We evaluate the
performance and power efficiency using prominent HPC benchmarks, High-
Performance Linpack (HPL) and High Performance Conjugate Gradients
(HPCG), and expand our analysis using publicly available specialized
kernel benchmarks, targeting specific system components. In addition to
a large body of quantitative results, we emphasize five usually overlooked
aspects of the HPC platforms evaluation, and share our conclusions
and lessons learnt. Overall, we believe that this paper will improve the
evaluation and comparison of HPC platforms, making a first step towards
a more reliable and uniform methodology.

1 Introduction
Each year we see a greater variety of HPC systems in the market. In addition to
mainstream x86 architectures, emerging architectures based on POWER, ARM,
SPARC and others are steadily appearing and catching attention [1]. Instead
of hosting a single type of platform, supercomputing centers already provide a
diverse set of systems. Making the right choice of architecture is critical, but
evaluating and comparing HPC systems is hard.

Our study evaluates and compares three generations of mainstream x86
architectures: Intel Nehalem, Sandy Bridge and Haswell, and five emerging
architectures: Intel Knights Landing (KNL), IBM Power8, Cavium ThunderX,
and Applied Micro (APM) X-Gene 1 and X-Gene 2. In addition to presenting a
large body of quantitative results, we emphasize six usually overlooked aspects
of HPC platform evaluation, and share our conclusions and lessons learnt.

First, we show that a platform’s performance and energy-efficiency
depend significantly (n-fold) on the characteristics of the target appli-
cations. For example, the ThunderX platform has 50% better energy efficiency



than Haswell when running memory-bound HPCG, but Haswell shows 3.6×
better efficiency for the compute-intensive HPL. We strongly advocate that
any comparison between the platforms should start with the performance and
energy-efficiency of HPL and HPCG as the boundaries of the compute-intensive
and memory-intensive HPC applications. However, none of the previous studies
that compare emerging and mainstream HPC platforms includes these results.

Second, our performance-per-watt results show that emerging ARM-based
platforms generally show much lower energy efficiency than the KNL
and mainstream Intel platforms. This finding opposes the conclusions of previous
studies that report or estimate high energy-efficiency of the ARM platforms
(reasons for this are discussed in detail in Section 4).

Third, it is important to understand whether HPC systems should be based
on strong or weak CPU cores. ARM-based platforms typically use weak
cores that are slower than x86, KNL and POWER8 servers in terms of floating-
point performance and memory bandwidth. The ARM approach can still be used
to build massively parallel systems that reach the target performance by using a
larger number of cores. However this scale-out approach may cause significant
performance and energy-consumption penalties [2], and it is important to confirm
that it is indeed a viable alternative.

Forth, we detect a significant range in the main memory access latency,
with a factor of three difference between the fastest and slowest platforms under
study (90 ns–285 ns). Since memory latency has a direct performance impact for
many applications [3], it should be minimized in HPC servers, and any increment
above about 100 ns should be analysed and justified.

Fifth, we also analyse the Byte/FLOP ratio and detect a huge difference
of up to 21× among the platforms under study. The Byte/FLOP ratio is one of
the most important design decisions, and we hope that our results will resurface
a discussion on its desired range.

Sixth, our measurements show significant, up to 70% differences between
theoretical and sustained performance, especially for emerging platforms.
Therefore, we note the importance of measuring performance using specialized ker-
nel benchmarks rather than relying on theoretical numbers from datasheets, even
for the first order evaluation of the system. Also, hopefully these results will moti-
vate further development of the emerging HPC compilers and scientific libraries.

In summary, given the substantial investment of time and money to deploy
an HPC system, it is important to carefully evaluate and compare the available
mainstream and emerging architectures. The conclusions of such an analysis
depend significantly on the applied methodology, and the previous studies report
the findings based on different experimental set-up, statistics of interest and
benchmarks. Overall, we believe that this paper will improve the evaluation
and comparison of HPC platforms, making first steps towards more reliable and
uniform methodology.

2 Experimental environment

In this section, we explain efforts in evaluation of HPC systems, together with
workloads and experimental platforms we used in our analysis.



2.1 HPC benchmarks
HPC benchmarks are important for bounding the sustainable performance of
different components in a system.

High-performance Linpack (HPL) [4] has been the only metric for ranking
HPC systems for a long time. It measures the sustained floating-point rate
(GFLOPs/s) for solving a dense system of linear equations using double-precision
floating-point arithmetic.

High-performance Conjugate Gradients (HPCG) [5] is based on an itera-
tive sparse-matrix conjugate gradient kernel. The performance of HPCG largely
depends on the available memory bandwidth [6].

HPC Challenge (HPCC) [7] is a benchmark suite that is designed to approx-
imately bound computations of high and low spatial and temporal locality. We
used DGEMM and STREAM benchmarks from HPCC suite. DGEMM is a
floating-point intensive benchmark that represents the corresponding Level 3
Basic Linear Algebra Subprograms (BLAS) routine. The benchmark calculates
the product of dense double precision matrices: C ← αA×B + β. It is used for
measuring the sustainable FLOP performance, at the per-core or per-node level.
The STREAM benchmark performs operations on arrays that are several times
larger than the last level cache, effectively measuring the system’s sustained
memory bandwidth [8]. It comprises four kernels: Copy, Add, Scale and Triad.
In our analysis, we report the results of the Triad operation, since it is the most
similar to kernels used in HPC applications.

LMbench suite [9] contains several benchmarks which measure performance of
different hardware and software components in a system. We used the memory
read latency benchmark in order to measure access latencies of different levels in
memory hierarchy. The benchmark reads the input dataset in a random order to
mitigate the impact of the data prefetching. By varying the input load size, we
measure access latency to all memory hierarchy levels.6

2.2 HPC platforms

For the last decade, the dominant HPC architectures have been Intel architectures
such as Nehalem, Sandy Bridge and Haswell. Apart from these, many-core systems,
of which Intel’s KNL is an example, are becoming popular, while other vendors are
also emerging architectures that are promising for HPC. For our study, we included
mainstream HPC architectures which have been predominantly used in HPC sys-
tems so far, as well as emerging architectures which have been recently introduced
to the market and are set to be used in future HPC systems. The architectures
under study with their most important features are summarized in Table 1.

Comparing different HPC architectures under study is challenging. Architec-
tures developed by different vendors essentially have different Instruction Set
Architectures (ISAs) and therefore different system software such as compilers and
scientific libraries. For each platform, we identified system software that provided

6 The measured latency comprises not only the latency of the hardware components
(caches, memory controller, main memory), but also the latency of the system software
such as virtual-to-physical memory translation.



Table 1: Summary of the most important features of platforms under study

Mainstream architectures Emerging architectures
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Manuf. Intel Intel Intel Intel IBM Cavium APM APM

Arch. Nehalem
Sandy
Bridge

Haswell MIC POWER8 ARMv8-A ARMv8-A ARMv8-A

Released 2009 2012 2014 2016 2014 2014 2015 2013

Sockets 2 2 2 1 2 2 1 1

Cores per
Socket

4 8 16 68 10 48 8 8

CPU freq.
[GHz]

2.8 2.6 2.3 1.4 3.49 1.8 2.4 2.4

Out-of-order Yes Yes Yes Yes Yes No Yes Yes

DP Flops,
per cycle,
per core

4 8 16 32 8 2 2 2

L1i 32kB 32kB 32kB 32kB 32kB 48kB 32kB 32kB

L1d 32kB 32kB 32kB 32kB 64kB 32kB 32kB 32kB

L2 256kB 512kB 256kB 1MB 512kB 16MB 256kB 256kB

L3 8MB 20MB 40MB / 80MB / 8MB 8MB

Memory
conf.

per socket

3 ch.
DDR3
1333

4 ch.
DDR3
1600

4 ch.
DDR4
2133

8 ch.
MCDRAMa

+
6 ch.

DDR4
2400

4 ch.
DMI

28.8GBps

4 ch.
DDR3
1600

4 ch.
DDR3
1600

4 ch.
DDR3
1600

Memory
capacity
per node

24GB 32GB 128GB

16GB
(MCDRAM)

+
192GB
(DDR4)

256GB 128GB 128GB 64GB

a KNL system has been set to flat mode, therefore both memories, MCDRAM and DDR4, are
exposed as separate NUMA nodes, and the user can choose in which memory the workload executes.

the best performance. It has been used as is, and has not been tuned for each of
the platforms. Hence, our conclusions should not be understood as a comparison
between different hardware (CPUs and memory only), but a comparison of the
platforms (systems) that also include the corresponding system software.

To our knowledge, there are no studies which analyze this many platforms,
three mainstream and five emerging ones. Unlike some of the previous studies
which performed first-order evaluation of the emerging platforms by using their
developer kits, all the platforms under study are fully-fledged production servers
that could be used in an HPC system. We argue that it is important to compare
fully-fledged servers since their performance features and power consumption
differ significantly from the corresponding developers kits.

2.3 Power measurements

For all platforms under study we measure the power consumption at the server
level, which may comprise multiple sockets, as detailed in Table 1. The power
measurements are performed with on-board or external power meters, that
account for the overall server consumption including CPUs, memory, power
supply, and so on. We also used power measurements to calculate the power
efficiency of the platforms under study for HPL and HPCG benchmarks.
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Fig. 1: Except for KNL, emerging plat. are generally behind the mainstream ones.

3 Results
In this section, we present results from the evaluation of multiple HPC architec-
tures with different benchmarks. We start with the most prominent HPC bench-
marks, HPL and HPCG, and later expand the analysis to include other bench-
marks, which together give a more complete picture of a system’s performance.

3.1 HPL and HPCG benchmarks
This section gives insights on the performance and power efficiency of platforms
under study, while executing the HPL and HPCG benchmarks.7 Figures 1a and
1b show the HPL and HPCG performance and performance-per-watt of platforms
under study. These measurements are obtained with multi-threaded version of
the benchmarks that use all the available cores.

Figure 1a lists the performance measurements. The KNL platform shows by
far the best performance for HPL, followed by the Haswell and POWER8 servers,
which reach 42% and 18% of the KNL’s HPL performance. Emerging ARM
platforms show significantly lower performance. ThunderX, X-Gene 2 and X-
Gene 1 deliver 5%, 1.3% and 0.1% of the KNL HPL scores, respectively. The results
also show the notable improvement in the HPL performance over the various
generations of mainstream platforms, from Nehalem to Sandy Bridge and Haswell.

The HPCG results show a slightly different trend. KNL using MCDRAM is
still the highest-ranked platform, followed by Haswell, POWER8, Sandy Bridge
and ThunderX. However, the gap in performance between these platforms is
much lower for HPCG than for HPL.

Figure 1b lists the performance-per-watt results for the studied platforms.
These measurements are important because one of the main drivers for research
on the feasibility of the HPC on emerging ARM-based platforms is improved
energy efficiency over mainstream HPC servers. Mainstream platforms show
increasing power efficiency for HPL, with KNL as the best. POWER8, ThunderX
and X-Gene 2 show significantly lower energy efficiencies, at just 7.6%, 8.3% and
2.9% of the KNL’s performance-per-watt. HPCG power efficiency increases from
Nehalem to Sandy Bridge and then stagnates for Haswell and KNL using DDR4.
On the other hand, KNL using MCDRAM achieves the highest power efficiency.
Emerging platforms show a much lower power efficiency, except for the ThunderX
platform, which is the second best, only 31% lower than KNL using MCDRAM.

The results show that, regarding power efficiency, it is very important to
identify the target application. When targeting floating-point intensive applica-
tions (such as HPL), using low-power/low-performance cores seems not to be the
best approach for overall energy efficiency. However, when targeting applications
with lower processing requirements (and higher stress to other resources such as

7 For X-Gene 1 platform, we could not obtain power measurements.
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Fig. 2: Sustainable FLOPS and memory bandwidth: The position of each platform
in the chart shows the per-node sustained GFLOPs/s (x-axis) and memory
bandwidth (y-axis). The marker size is proportional to the per-core performance.

main memory) the ThunderX approach may deliver the energy efficiency, which
significantly exceeds the x86 and POWER8 platforms.

3.2 Sustainable FLOP performance and memory bandwidth
In addition to the HPL and HPCG measurements, we also plot the raw measure-
ments, sustained FLOPS and memory bandwidths of the studied platforms, at
two levels of granularity, per-node and per-core. For node-level measurements, we
execute the multi-threaded implementations of DGEMM and STREAM, using all
the cores in the system. For core-level measurements, we execute the DGEMM
benchmark on a single CPU core, and compute the per-core ratio of the sustain-
able bandwidth as the node STREAM result divided by the number of cores per
node. This would correspond to a fair share of the sustainable memory bandwidth
delivered to each application process assuming that the system is fully utilized.

The results are summarized in Figure 2. The position of each platform
in the chart shows the per-node sustained GFLOPs/s (x-axis) and memory
bandwidth (y-axis), while the size of the marker is proportional to the per-
core performance. We also use different hatch patterns to distinguish between
mainstream, ARM-based, POWER8 and KNL platforms. The results correlate
with the HPL and HPCG analysis. Again, we see that the relative difference in
the FLOPs performance (x-axis) is much higher than the memory bandwidth
differences (y-axis). The Figure 2 also indicates that POWER8, Haswell and
KNL platforms with DDRx memory interfaces reached plateau in terms of the
sustained memory bandwidth, while KNL with MCDRAM provided a huge leap
forward. Finally, the figure clearly shows that the emerging ARM platforms have
lower performance on the server level (they are clustered in the left bottom corner
of the chart) and their per-core capabilities are n-fold below the capabilities of
the x86, POWER8 and KNL platforms (the size of the marker is much smaller).

This result launches an important discussion: should one use powerful cores
similar to Haswell, POWER8 or KNL as the building blocks for large-scale HPC
systems or use weaker cores, such as X-Gene or ThunderX? Reaching the target
performance with weaker cores would require building of massively parallel sys-
tems, using higher number of cores, sockets and servers. This scale-out approach
could indeed show good HPL and HPCG performance since these benchmarks
have very good scalability and their performance is close to being proportional to
the total system FLOPS or system memory bandwidth, respectively [10]. How-
ever, scale-out approach with production HPC applications may cause significant
performance penalties. A recent study from Zivanovic et al. [2] analyzes the
scale-out overhead of production HPC applications [11] running on a large HPC
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Fig. 3: Cache and main memory latency can vary significantly among the studied
platforms. KNL memory access latency exceeds 3× the latency on other platforms.

system [12]. Their results show that, even if the applications are substantially
optimized, increasing the number of application processes to solve a fixed problem
leads to significant increase in both energy and node-hours.

We therefore believe that before claiming that HPC systems based on weak
cores are a viable alternative, it is essential to perform a profound analysis of the
trade-offs between horizontal and vertical scaling in HPC.

3.3 Caches and main memory access latency
For decades, the memory system has imposed a fundamental limitation on system
performance. This is recognized by the HPC community: HPL scores are fre-
quently complemented by HPCG performance; sustained memory bandwidth is
one of the main HPC performance metrics [7] [13], and high-bandwidth memory
solutions caused a lot of interest by the HPC users. However, although the com-
munity invests significant effort to understand the memory bandwidth, the cache
and main memory latencies are usually overlooked. This is surprising because
the memory latency has a direct performance impact, and the memory wall itself
was defined in terms of latency, not bandwidth [3].

In this section, we compare the access time of the caches and main memory
for platforms under study. The results are plotted in Figure 3. The x-axis of the
figures shows the input dataset size. In Figure 3a the load size ranges from 2 KB
to 256 KB, which focuses on the L1 and L2 caches. In Figure 3b dataset size
reaches up to 1 GB, covering all levels of caches and main memory. Even for the
L1 and L2 caches we detect a significant difference in the latencies. At the L1
cache (2–32 KB load) the latency varies from 1.25 ns (Sandy Bridge, Haswell,
POWER8) to 2.5 ns for KNL. In the L2 cache (128 KB load), the difference is
even more significant, from 3.6 ns (Nehalem, Sandy Bridge, Haswell, POWER8)
to 23 ns (ThunderX). The main memory latency (256 MB load) ranges from
90 ns (Nehalem, Haswell and POWER8) and 105 ns (Sandy Bridge, ThunderX)
up to 250 ns and 285 ns for KNL using DDR4 and MCDRAM, respectively.

Overall, our measurements show that the cache and main memory latencies
can vary significantly among platforms. Mainstream platforms and POWER8 per-
form well on all memory hierarchy levels. Emerging ARM platforms, ThunderX
and X-Gene, have somewhat higher latency. KNL has significantly higher latency
especially for the datasets that exceed 1 MB. Since these latencies have a direct
performance impact, especially for the workloads with a high rate of dependent
memory accesses, they are an important parameter to consider. KNL platform is
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especially interesting since it incorporates high-bandwidth MCDRAM, based on
3D-integration. While KNL delivers memory bandwidth far superior to any other
platform under study, it comes with the cost of the memory access latency that
exceeds 3× the latency on mainstream platforms. Finally, it is also important to
notice that most of the KNL memory access penalty does not come from the mem-
ory device itself. DDR3 and DDR4 modules timing parameters are standardized by
JEDEC [14], and the variation between them (in nanoseconds) is negligible. Still,
KNL DDR4 access is around 150 ns slower than other platforms. Therefore, the
KNL memory access penalty originates mainly from handling the memory request
between the last-level cache and the memory device, i.e. from the memory queues
and memory controller. It is interesting to see whether future architectures will suc-
ceed in incorporating 3D-stacked memory without a significant latency overhead.

3.4 Byte/FLOP ratio
Using the node-level measurements of FLOPs and memory bandwidth, in Figure 4
we show the ratio between sustained memory bandwidth and FLOPS. This ratio
presents the amount of data (in bytes) which has to be transfered from main
memory, in order to perform one floating-point operation. Platforms with a low
Byte/FLOP ratio are well suited for compute-intensive applications such as HPL.
In these platforms, for real applications memory bandwidth may easily become a
performance bottleneck. The platforms with a high Byte/FLOP ratio perform
well with applications that put a high pressure on memory bandwidth, such as
HPCG. In this case, floating-point processing power may limit the performance.

We detect a huge difference in the Byte/FLOP ratio among the platforms
under study. The measured Byte/FLOP ratio ranges from 0.05 (KNL-DDR4) to
1.07 (X-Gene 1), a difference of more than 21×. For mainstream HPC systems
(Nehalem, Sandy Bridge and Haswell), the Byte/FLOP ratio is significantly
below 1, and it has the tendency of decreasing [15], which does not serve well for
memory-bound HPC workloads. As seen in Section 3.2, current DDRx technology
cannot keep up with aggressive FLOPs performance increases, so further progress
in memory bandwidth relies on high-bandwidth memory solutions based on
3D-integration. In this respect, the KNL platform has a much higher Byte/FLOP
ratio using MCDRAM than DDR4. Emerging systems, on the other hand, show
a promising ratio, which is higher than mainstream platforms. This is mostly
because the sustainable memory bandwidth is currently comparable between
mainstream and emerging platforms, while the FLOPs performance of emerging
systems is significantly below the mainstream ones. If this ratio keeps up with
future developments of emerging platforms, we could see systems that cope
better with memory-bandwidth intensive HPC workloads. Since HPC system
performance strongly depends on the Byte/FLOP ratio, we advocate for this
ratio to be constrained more precisely for HPC systems.
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theoretical maximums, especially for emerging platforms.

3.5 Theoretical vs. sustained FLOPs/s and memory bandwidth
As the final step of our analysis, we compare the maximum theoretical FLOPS
performance and memory bandwidth from platform datasheets with the sustained
values measured using DGEMM and STREAM. This comparison is important
because sometimes theoretical numbers are used to compare platforms or estimate
large-scale system performance before they are built. Our results, however, show
that the differences between theoretical and measured numbers may be significant.

The results are displayed in Figure 5. Mainstream HPC systems based on
Sandy Bridge and Haswell deliver sustained FLOPS performance and memory
bandwidth close to theoretical maximums. Some emerging architectures, however,
reach moderate FLOPS and memory bandwidth utilization even when running the
DGEMM and STREAM benchmarks. For example, X-Gene 1 and KNL reach only
48% and 56% of the maximum theoretical FLOPS, while X-Gene 2 and POWER8
achieve similar rates for memory bandwidth. An explanation could be that the
overall system cannot fully utilize SIMD floating-point execution units or data-
transfer mechanisms. By the overall system we include both hardware and system
software, including the pipeline, out-of-order (OoO) engine, caches, compilers and
scientific libraries. The HPC system software for emerging platforms is still under
development; for example, the first math libraries for ARM-based servers were
released two years ago [16]. Similar studies confirm that system software stack
on emerging platforms is relatively immature, which limits the achievable perfor-
mance [17–19]. Finally, ThunderX shows very low FLOPS and memory utilization
of 23% and 27%, respectively. In this case, additional problem is the simplicity
of the in-order core and poor performance of inter-socket communication.

This analysis has two outcomes. Firstly, we would avoid using maximum
theoretical performance even for first-order provisioning or an early evaluation of
the HPC system, especially for the emerging platforms. Secondly, for some of
the platforms under study, the results also show notable room for performance
improvement, which will hopefully motivate further development of compilers
and scientific libraries for emerging HPC platforms.

4 Related work
In addition to mainstream x86 architectures, emerging architectures based on
POWER, ARM, and SPARC are steadily appearing and catching the attention of
the HPC community. Although making the right choice of architecture is critical
for the HPC infrastructure providers, only few studies evaluate and compare
available emerging and mainstream HPC platforms.

The study of Rajovic et al. [20] is the first to analyze the suitability of mobile
ARM processors for HPC. The study compares the performance and energy
efficiency of development boards using mobile ARM 32-bit SoCs against a laptop



with a Intel Sandy Bridge CPU. 8 Based on these measurements, the authors
conclude that the performance and energy efficiency of mobile ARM platforms is
competitive to the mainstream x86 HPC servers.

Abdurachmanov et al. [18] compare an X-Gene 1 development board with
a dual-socket Intel Sandy Bridge server and Intel Xeon Phi PCIe add-on card.
The authors compare only the CPU power consumption using on board sensors
for X-Gene 1 development kit and Xeon Phi card, and RAPL interface [21] on
the Sandy Bridge CPU. The study analyzes performance and energy efficiency of
a single benchmark, ParFullCMS, and it concludes that the Sandy Bridge and
Xeon Phi CPUs have similar performance that is 2.5× higher than X-Gene 1.
Performance-per-watt results position Sandy Bridge as the most efficient platform,
followed by X-Gene 1 (approximately 10% lower efficiency) and Xeon Phi (more
than 35% lower efficiency w.r.t. Sandy Bridge).

Early evaluation of emerging platforms using developer kits is valuable and
needed. However, we argue that energy-efficiency analysis requires measurements
on the fully-fledged production servers, as performed in our study.

Rajovic et al. [22] also deploy a prototype cluster with nodes based on
mobile ARM 32-bit SoCs and compare it with a production HPC Sandy Bridge
cluster. The study also estimates the performance of the potential successor
mobile SoCs with advanced ARM cores and embedded GPUs. The authors
conclude that emerging ARM-based systems would offer performance equivalent
to mainstream x86 systems, while saving 40% energy, and achieving higher
integration density. However, these conclusions are based on two non-trivial HPC
application requirements. First, the HPC applications would have to fully utilize
the GPUs embedded into emerging SoCs, which is not the case for most current
production HPC codes. For the applications that can fully utilize the GPUs, the
CPU+GPU emerging systems should be compared with similar (CPU+GPU)
mainstream platforms, not with respect to the CPU-only systems. Second, the
application should have perfect parallel efficiency and load balancing when scaling-
out from strong x86 cores to a approximately 4× larger number of weaker ARM
cores. However, scale-out of production HPC applications typically leads to
significant performance penalties [2]. Finally, the authors do not consider the
performance and energy impact of RAS features (RAS: Reliability, availability
and serviceability), such as memory ECC, available in the contemporary HPC
systems, and not available on the emerging system under study.

Laurenzano et al. [17] compare the performance, power and energy consump-
tion, and bottlenecks of Sandy Bridge, Atom, Haswell and X-Gene 1 servers. This
analysis is based on system measurements with a large number of benchmarks and
statistical modeling. The authors conclude that on average, for all the benchmarks
under study, the X-Gene 1 and Atom servers have comparable performance, which
is significantly below the Haswell and Sandy Bridge systems. When focusing
on the workloads with an intensive use of floating-point and vector units, the
study estimates similar performance on Sandy Bridge and X-Gene 1 systems. Our

8 In order to reduce the non-essential power consumption the authors switch off the
laptop’s screen.



measurements, however, show that DGEMM performance on Sandy Bridge CPUs
exceed X-Gene 1 and X-Gene 2 by 9× and 6×, respectively (see Section 3.2).
Regarding the energy efficiency, Laurenzano et al. measure similar results for the
X-Gene 1 and Sandy Bridge, somewhat below the Atom and Haswell servers. For
all the platforms under study, the authors perform server-level measurements, but
then extract the power resulting from executing the application as a subtraction
between the server power executing the application and the idle server power.
Our position is that using this metric to quantify and compare energy efficiency
is misleading and unfavorable for servers with higher energy proportionality, in
which power consumption is highly correlated to server performance.

The conclusions of the studies that evaluate and compare emerging and main-
stream HPC platforms depend significantly on the methodology and benchmarks
used. Still, the related work shows there is no unified approach for this analysis,
and that the conclusions are sometimes based on a methodology and assumptions
open to discussion. In addition to a large body of quantitative results, this paper
emphasizes usually-overlooked and important aspects of the HPC platforms
evaluation. We believe this will improve the evaluation and comparison of HPC
platforms, making a first step towards a uniform and more reliable methodology.

5 Conclusions
In our study, we perform an extensive analysis of HPC architectures, three
mainstream and five emerging ones. To the best of our knowledge this is the
first study to include so many platforms. In addition to presenting a large body
of quantitative results, we highlight six important features in HPC systems
evaluation that require higher attention by the community.

First, we show a platform’s performance and energy-efficiency depend sig-
nificantly (n-fold) on the characteristics of the target applications, We strongly
advocate that any comparison among platforms should start with measurements
using HPL and HPCG, which form the boundaries of compute-intensive and
memory-intensive HPC applications.

Second, contrary to the conclusions of previous studies, our measurements on
fully-fledged HPC servers show that emerging ARM platforms generally show
much lower energy efficiency than the KNL and mainstream Intel platforms.

Third, we (re-)open a discussion on whether HPC systems should be based
on strong or weak CPU cores. Using weak cores to deploy a scale-out approach
may cause significant performance and energy-consumption penalties due to the
imperfect scalability of production HPC applications. It is therefore important
to confirm that this approach is indeed a viable alternative.

Forth, our results show a huge range of memory access latencies, from 90 ns to
285 ns for the studied platforms. While KNL with MCDRAM has the highest mem.
bandwidth, it also has the highest mem. latency, due to complex memory controller
and its handling of memory requests. Since memory latency has a direct perfor-
mance impact any increment above about 100 ns should be analysed and justified.

Fifth, we detect that the Byte/FLOP ratio can differ by a factor of up to
21× between platforms. While mainstream platforms show a decreasing tendency,
emerging platforms trend upwards in this metric. We propose for a community



to properly define this ratio for HPC applications, since it has a direct impact
on system performance.

Sixth, our results show that sustainable performance on the emerging plat-
forms can deviate more than 70% from theoretical performance. Therefore, we
strongly suggest not rely on theoretical performance, even in a first-order system
provisioning. These results will hopefully motivate further development of the
compilers and scientific libraries for emerging HPC platforms.

Overall, our study provides a significant body of useful information for HPC
practitioners and infrastructure providers. Even more important, we believe it will
considerably improve the future evaluations and comparisons of HPC platforms,
making a first step towards a more reliable and uniform methodology.

References

1. TOP500 List: Supercomputing Centers Have Become Showcases for Competing HPC
Technologies. http://www.top500.org/news/supercomputing-centers-have-become-showcases-
for-competing-hpc-technologies/ (June 2017)

2. Zivanovic, D., Radulovic, M., Llort, G., et al.: Large-Memory Nodes for Energy Efficient High-
Performance Computing. In: Proc. of the International Symposium on Memory Systems. (2016)

3. Wulf, W.A., McKee, S.A.: Hitting the memory wall: Implications of the obvious. ACM
SIGARCH Computer Architecture News 23(1) (March 1995) 20–24

4. Petitet, A., Whaley, R.C., Dongarra, J., Cleary, A.: HPL - A Portable Implemen-
tation of the High-Performance Linpack Benchmark for Distributed-Memory Computers.
http://www.netlib.org/benchmark/hpl/ (September 2008)

5. Dongarra, J., Heroux, M., Luszczek, P.: The HPCG Benchmark. http://www.hpcg-
benchmark.org (2016)
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