
Leveraging iterative applications to improve the scalability of task-based programming
models on distributed systems

Omar Shaabana,∗, Juliette Fournis d’Albiata, Isabel Piedrahitaa, Vicenç Beltrana, Paul Carpentera, Eduard Ayguadéa, Jesus Labartaa

aBarcelona Supercomputing Center, Placa Eusebi Guell, 1–3, 08034, Barcelona, Spain

Abstract

Distributed tasking approaches, such as OmpSs-2@Cluster, StarPU-MPI, PaRSEC and others, express an HPC application as a
graph of tasks with dependencies. The single task graph avoids the synchronization and deadlock issues of an MPI + X approach
and it unifies the representation of parallelism across CPU cores, accelerators, and distributed-memory nodes. Most models create
the task graph sequentially, which provides a clear and familiar programming interface, simplifying development and maintenance
and facilitating the porting of existing codes. The downside is the sequential bottleneck, which limits performance and scalability.
Unless the tasks are very large, distributed sequential task graph approaches are not yet a viable alternative to MPI + X.

A large class of applications implement iterative methods or multi-step simulations, which create the same directed acyclic
graph of tasks on each timestep. We exploit this inherent structure in a sequentially-constructed distributed tasking model, in order
to eliminate the sequential bottleneck and control messages, while retaining the simplicity and productivity of the approach. This
is done by taking advantage of the recently-proposed taskiter directive to create a single iteration as a cyclic graph and precompute
the MPI transfers, reusing this representation for all subsequent iterations. We define the programming model and describe the
full runtime implementation, and integrate our proposal into OmpSs-2@Cluster. We evaluate it using five benchmarks on up
to 32 nodes of the MareNostrum 4 supercomputer. For applications with fork–join parallelism, our approach has performance
similar to fork–join MPI + OpenMP. It is therefore a viable productive alternative to MPI + OpenMP, unlike the existing OmpSs-
2@Cluster implementation, which is up to 15 times slower than MPI + OpenMP. Our method translates the body of the loop into
asynchronous tasks with non-blocking communication, which in some cases exposes dramatically more parallelism than fork–join
MPI + OpenMP. For a 2D Gauss–Seidel stencil computation, for example, our approach enables a 3D wavefront computation,
giving performance up to 11 times faster than fork–join MPI + OpenMP and on-a-par with state-of-the-art TAMPI + OmpSs-2. All
software, comprising the compiler, runtime and benchmarks, is released open source.

1. Introduction

Distributed-memory tasking approaches, such as OmpSs-
2@Cluster [3], StarPU-MPI [8], PaRSEC [29], OMPC [56] and
others [32], express an HPC application using a single graph
of tasks with dependencies. These tasks are mapped to pro-
cesses and executed concurrently across all available compute
nodes. Distributed tasking approaches avoid the synchroniza-
tion and deadlock issues of an MPI+X approach [48, 47, 51],
and they can be extended to naturally support transparent dy-
namic load balancing [4, 32] and both core- and node-level mal-
leability [36]. While some models use an implicit task graph,
such as the Parameterized Task Graph (PTG) originally used for
PaRSEC [23], the majority use a Sequential Task Graph (STG)
model, where the task graph is constructed sequentially. The
STF approach provides a clear and familiar meaning to the pro-

∗Corresponding author
Email addresses: omar.ibrahim@bsc.es (Omar Shaaban),

juliette.fournis@bsc.es (Juliette Fournis d’Albiat),
isabel.piedrahita@bsc.es (Isabel Piedrahita),
vicenc.beltran@bsc.es (Vicenç Beltran), paul.carpenter@bsc.es
(Paul Carpenter), eduard.ayguade@bsc.es (Eduard Ayguadé),
jesus.labarta@bsc.es (Jesus Labarta)

gram, which simplifies development and maintenance, as well
as facilitating the porting of existing codes.

The biggest issue with the distributed STF approach is lim-
ited scalability for medium and fine-grained tasks. Depending
on the benchmark and task granularity, OmpSs-2@Cluster, the
distributed-memory variant of OmpSs-2 [12], scales to about
16 nodes [36], while other STF approaches that create tasks
in parallel, such as OmpSs@cloudFPGA [24] and StarPU-MPI
achieve somewhat better scalability, but they are still ultimately
limited by the sequential filtering of task dependencies. More-
over, all nodes need to independently agree on the same map-
ping of tasks to nodes. This static or deterministic allocation of
tasks to nodes makes it impossible to transparently balance the
load across nodes.

At the same time, many HPC applications implement iter-
ative methods or multi-step simulations, which create the same
directed acyclic graph (DAG) of tasks on each timestep. A re-
cent paper proposed the taskiter directive [6], which gives ap-
plication programmers a way to express that a specific loop cre-
ates the same pattern of tasks on each iteration. This informa-
tion allows the runtime to build the DAG for a single iteration
and link it into a cyclic graph that describes the overall compu-
tation, thereby amortizing the costs of task creation, scheduling

1

and dependency management across all iterations of the loop.
Taskiter was proposed for SMPs, but it is a particularly good

fit for distributed tasking, for two main reasons. Firstly, as the
number of nodes grows, the number of tasks normally grows
in proportion, in order to occupy the computational resources,
so the sequential bottleneck that motivates taskiter scales at
least as fast as the number of nodes. Meanwhile, the wall-
clock time for the computation either stays roughly constant
(for weak scaling, i.e., fixed computation per node) or it falls
with the number of nodes (for strong scaling, i.e., fixed prob-
lem size). The result is that the growing sequential bottleneck
quickly dominates the total execution time. Secondly, knowl-
edge of the full cyclic dependency graph ahead of time allows
the runtime to precompute all MPI data transfers. With the
usual approach, these data transfers need to be computed dy-
namically, as the graph is built, which results in a large number
of control messages (see Section 2.2.2).

We extend the OmpSs-2@Cluster distributed tasking model
to support a distributed form of taskiter and describe the full
implementation. Our approach translates the body of the loop
into asynchronous tasks and non-blocking MPI communica-
tion. This fully eliminates the control message overhead. By
performing the communication inside asynchronous tasks, it
naturally overlaps communication and computation, in some
cases exposing dramatically more parallelism than the typical
fork–join MPI + OpenMP approach.

We implemented it in the Nanos6@Cluster runtime system
and evaluated it using five benchmarks on up to 32 nodes of
the MareNostrum 4 supercomputer. Our results improve on the
existing OmpSs-2@Cluster approach, which, for 64 processes
on 32 nodes, is slower than MPI + OpenMP, by between 6 and
15 times for three of the five benchmarks. In contrast, our max-
imum slowdown with respect to MPI + OpenMP is just 15%.
For four of the five benchmarks, our performance either exceeds
that of MPI + OpenMP or is within 5.0%. For the 2D heat
equation stencil calculation, discussed in Section 3, which has
the potential for 3D wavefront parallelism, we achieve 11 times
higher performance than fork–join MPI + OpenMP, on-a-par
with state-of-the-art asynchronous Task Aware MPI (TAMPI)
+ OmpSs-2. All software, including the runtime system and
benchmarks is released open source [13].

In summary, the contributions of this paper are:

• We propose an extension for the current OmpSs-2@Cluster
as an efficient and portable distributed task programming
model for iterative applications.

• We describe the runtime implementation and related op-
timizations.

• We implement our model in the Nanos6@Cluster run-
time system and provide experimental results on up to 32
nodes of the MareNostrum 4 supercomputer.

• We demonstrate that while the existing OmpSs-2@Cluster
approach is only viable for up to 4 or 8 nodes, our ap-
proach is on-a-par with an asynchronous TAMPI + tasks
hand-optimized implementation up to at least 32 nodes.

Rank 0

Application
(main)

Nanos6@Cluster

MPI

Rank 1

Application

Nanos6@Cluster

MPI . . .

Rank N − 1

Application

Nanos6@Cluster

MPI

Figure 1: OmpSs-2@Cluster architecture in which each rank is a peer. The
main function is executed as a task on Rank 0. All other tasks may be offloaded
for execution by any other rank.

The rest of this paper is structured as follows. Section 2
is a summary of the relevant background in OmpSs-2, OmpSs-
2@Cluster, Taskiter and Task-Aware MPI (TAMPI). Section 3
is a motivational example of a 2D Gauss–Seidel stencil com-
putation. Section 4 presents the programmer’s model and Sec-
tion 5 describes the runtime implementation in detail. Section 6
describes the evaluation methodology and Section 7 presents
the experimental results. Finally, Section 8 discusses the re-
lated work and Section 9 concludes the paper.

2. Background

2.1. OmpSs-2, Nanos6 and LLVM

OmpSs-2 [12] is the second version of the OmpSs [26] pro-
gramming model. It is open source and used as a research plat-
form to develop and evaluate ideas that may be proposed for
future standardization in OpenMP [40, 10]. OmpSs-2 is based
on directives and it enables parallelism in a dataflow way [44].
OmpSs-2 is similar to OpenMP except that it uses a thread-pool
execution model, where workers are created at startup, rather
than the fork–join model of OpenMP, which creates threads
only for the parallel sections. It targets heterogeneous architec-
tures through native kernels, and uses asynchronous task par-
allelism as the main mechanism for concurrency. Task data
accesses are a unified way to express task ordering dependen-
cies, optimize data locality and determine data transfers to and
from accelerators. The reference implementation of OmpSs-
2 comprises the OmpSs-2 compiler [15], which is based on
LLVM [2]/Clang [1], and the Nanos6 [11] runtime.

OmpSs-2 extends OmpSs to improve task nesting and fine-
grained dependencies across nesting levels [42, 7]. It adds weak
access types: weakin, weakout and weakinout, which specify
that a task does not directly access the corresponding region,
but its subtasks may read or modify the data. Weak accesses
do not delay task execution, but they link between dependency
domains, to support fine-grained task ordering and enable the
passing of data location information to and from the subtasks.

2.2. OmpSs-2@Cluster

OmpSs-2@Cluster is the extension of OmpSs-2 to support
task offloading among nodes [3, 14]. As an alternative to MPI
+ OmpSs-2, it scales to about 16 nodes [3], depending on the
algorithm and problem size. It supports active malleability, in-
teracting with the job scheduler to request or release compute
nodes, and then making use of these resources in a way that

2

is transparent to the programmer [36]. It can also be used to
provide multi-node dynamic load balancing for MPI + OmpSs-
2 programs [4], using its ability to offload tasks to ensure that
each node has an equal amount of work.

As shown in Figure 1, each rank runs an instance of the
Nanos6@Cluster runtime. The runtimes coordinate as peers,
with all communication for control messages and data transfers
done using two-sided MPI point-to-point communication. All
runtimes mmap a common virtual memory region, so that data
allocated on any node can be accessed, at the same address, by
any other task on any node, so long as it is part of the task’s
access specification. The auto keyword allows tasks to access
data whose address is not known at task creation time [49]. Ap-
plication data is allocated either as local memory, which is ac-
cessible to the (parent) task that performs the allocation, as well
as its subtasks, and copied back on a taskwait of the parent task,
or as distributed memory, which is accessible only by subtasks
and not copied back on a taskwait of the parent.1

2.2.1. Tasks, offloading and scheduling
The main function executes as a task on the first process,

Rank 0. All other tasks are created as subtasks of their parent,
initially on the node that executes the parent task. Top-level
tasks are therefore initially created on Rank 0. If the task is
to be executed locally, then it is passed to the host scheduler
when it becomes ready, in the normal way. Otherwise, since the
task will be executed remotely, an MPI message is sent to the
remote rank. On receipt, the remote rank creates a copy of the
task, which is scheduled by the host scheduler on the remote
rank. Scheduling is therefore done at two levels: the cluster
scheduler of the parent’s rank maps the task to the execution
rank and the host scheduler on the execution rank schedules the
task to run on an available core.

Optimized OmpSs-2@Cluster programs typically have two
levels of nested tasks. The top level has one offloadable task per
process, in order to distribute the work across processes, and
the second level has a small number of non-offloadable tasks
per core, in order to distribute the work across the cores on that
process. This approach mitigates the sequential task creation
and offloading bottleneck, at the cost of some programmer com-
plexity, and it is responsible for a good part of the scalability of
OmpSs-2@Cluster to about 16 nodes [3]. Since the top-level
tasks do not themselves perform computation, they can execute,
and create their subtasks, before the data is ready. This is made
possible using weak accesses on the top-level tasks (see Sec-
tion 2.1). All baseline OmpSs-2@Cluster benchmarks (without
taskiter) in this paper therefore use two levels of nested tasks
(see Section 6).

2.2.2. Control messages and global write ordering
Figure 2 is an example that shows the control messages that

OmpSs-2@Cluster uses to offload tasks and enforce dependen-
cies. Figure 2 is an OmpSs-2@Cluster program that creates
two tasks, A and B, and offloads them from Rank 0 to Rank 1

1Distributed data can be copied back to main using taskwait on.

1 // Task A

2 #pragma oss task \

3 node(1) \

4 depend(weakout:x)

5 { · · · }

6 // Task B

7 #pragma oss task \

8 node(2) \

9 depend(weakin:x)

10 { · · · }

(a) Source code

Rank 0 Rank 1 Rank 2

Ti
m

e

1 Task New A

2 Task New B

3 Task Finished A and Release x

4 Satisfiability x for B

5 Data Fetch x

6 Data Transfer x

7 Task Finished B and Release x

Critical path message
Non-critical path message

Data transfer (critical path)

(b) MPI messages

Figure 2: Large number of MPI messages for OmpSs-2@Cluster. Offloading
and executing these two tasks requires one data transfer message and six control
messages.

and Rank 2, respectively. These tasks have weak accesses, as
discussed above in Section 2.2.1. The task execution rank is
specified for concreteness in these examples, by overruling the
cluster scheduler using the node() clause. Figure 2(b) shows the
sequence of MPI messages, from top to bottom, involved in the
execution. First, Task A and Task B are offloaded to Rank 1 and
Rank 2, respectively with two consecutive Task New messages.
When Task A finishes on Rank 1, a Task Finished message is
sent back to Rank 0. This message releases the output value of
x and identifies the location of the latest version of the data. In
turn, Rank 0 sends a Satisfiability message to Rank 2, which
passes global write permission and the current location of x.
Since the data is on Rank 1, Rank 2 sends a Data Fetch control
message to Rank 1, which responds by posting a point-to-point
data transfer containing the data. Finally, when task B com-
pletes, Rank 2 sends a Task Finished message to Rank 0. The
runtimes collectively enforce a global ordering of writes, and
they send and receive a total of seven messages, all except one
(to offload B) on the critical path. Only one of these messages
carries the actual data.

2.3. Taskiter

The taskiter construct was recently proposed [6] for OmpSs-
2 and OpenMP. It declares that each iteration of the associated
loop creates the same dependency graph of tasks and accesses.
Moreover, the program remains valid if the code inside the loop
body but outside any task is executed just once.

An example program using taskiter is shown in Figure 3a,
where the only modification to take advantage of taskiter is the
pragma annotation on line 1. Figure 3b shows the regular task
graph. When using taskiter, however, the runtime only exe-
cutes one iteration of the taskiter’s loop, creating the depen-
dency graph for a single iteration. It then converts the graph
into the directed cyclic task graph (DCTG) shown in Figure 3c.2

In this figure, the non-cyclic edges, between tasks in the same

2The graph created by the runtime may have additional edges for the write-
after-write (WaW) dependencies between consecutive iterations of the same
task. These WaW dependencies are implied by existing paths in the graph, and
have been omitted from both subfigures.

3

1 #pragma omp taskiter

2 for(int it=0; it <NUM_ITERATIONS; it++) {

3 // Task 1

4 #pragma omp task depend(in:x,y) depend(out:a)

5 { · · · }

6 // Task 2

7 #pragma omp task depend(in:a,y) depend(out:b)

8 { · · · }

9 // Task 3

10 #pragma omp task depend(in:a,b) depend(out:x)

11 { · · · }

12 // Task 4

13 #pragma omp task depend(in:x,b) depend(out:y)

14 { · · · }

15 }

(a) Example OpenMP program using taskiter construct

1

2

3

4

Iteration 0

1

2

3

4

Iteration 1

· · ·a

a

b
x

b

x

y

y

a

a

b
x

b

(b) Normal task dependence graph without taskiter

1

2

3

4

a

a

b x

b

x

y

y

(c) DCTG with taskiter

Figure 3: Example OpenMP program using taskiter. The taskiter annotation
on line 1 of subfigure (a) enables the runtime to replace the normal unrolled
task graph in subfigure (b) with the concise directed cyclic task graph (DCTG)
illustrated in subfigure (c).

iteration, are shown as solid lines and the cyclic edges, passing
from one iteration to the next, are shown as dashed curves.

By only creating tasks and computing dependencies for a
single iteration, taskiter greatly reduces the sequential over-
head. Moreover, since the DCTG is constant for all iterations,
it is stored in a simple form, without locking or complex lock-
free data structures. This also reduces the impact on execution
time of the more powerful but expensive fragmented regions
dependency system [43], since dependency system operations
are only performed for the tasks in a single iteration.

As normal, the tasks can create subtasks. Although the first-
level task graph must be the same each iteration, their subtasks,
if any, may be different in each iteration, allowing irregular-
ity between iterations at deeper nesting levels. The optional
unroll(n) clause enables taskiter to support a loop whose task
graph repeats every n iterations.

Taskiter does not require the taskiter to have a run-time con-
stant number of iterations. If the number of iterations cannot be
determined by the compiler, then the compiler inserts a special
task known as a control task. The control task depends on every
subtask in the current iteration as well as the control task from
the previous iteration. The body of the control task checks the
loop’s condition and it cancels the taskiter when the condition
is false. When the taskiter has the unroll clause, these control
tasks are strided by the unrolling factor, providing a means to
overlap tasks from different iterations.

2.4. Task-aware MPI (TAMPI)

Hybrid MPI+X applications are typically structured as al-
ternating fork–join computation and sequential communication
phases. This strictly separates the computation (“X”) and com-
munication (MPI) through additional synchronization, which,
as we confirm in our results, hinders inter- and intra-node par-

1 double x[10];

2 · · ·

3 #pragma omp task depend(out:x)

4 {

5 MPI_Request request;

6 MPI_Irecv (&x, 10, MPI_DOUBLE , other_rank , tag ,

MPI_COMM_WORLD , &request);

7 TAMPI_Iwait (&request , MPI_STATUS_IGNORE);

8 }

9 #pragma omp task depend(in:x)

10 {

11 · · ·

12 }

Figure 4: Example OpenMP program using Task-aware MPI’s (TAMPI’s) non-
blocking communication. The call to TAMPI Iwait makes the completion of the
MPI call on line 6 visible to the runtime’s dependency system, simplifying the
code and reducing task scheduling costs.

allelism. We evaluate our approach primarily in comparison
with fork–join MPI+OpenMP, but, since OmpSs-2@Cluster is
naturally asynchronous, we also compare with state-of-the-art
asynchronous TAMPI.

TAMPI [48] is a library that integrates blocking and non-
blocking MPI primitives with task-based programming models.
It introduces a new level of MPI threading support, known as
MPI TASK MULTIPLE. An application that requests this thread-
ing level can safely use blocking MPI primitives inside tasks,
without the risk of deadlock. Without TAMPI, a blocking MPI
primitive blocks not only the task but also the underlying thread
that runs it. Even if a normal MPI implementation avoids busy
waiting, allowing the hardware thread to become idle, the task-
based runtime cannot discover that the hardware thread is avail-
able. TAMPI uses the PMPI interface to intercept MPI calls,
and it releases any blocking thread to the runtime system, so
that it can execute other tasks.

TAMPI also simplifies and optimizes the use of non-block-
ing MPI primitives, by making their completion visible to the
dependency system. This is done using the new TAMPI Iwait
and TAMPI Iwaitall calls, as illustrated in Figure 4. The task
on line 3 posts the non-blocking MPI Irecv on line 6 to receive
the contents of an array. It then calls TAMPI Iwait, on line 7,
which informs TAMPI that the given MPI request is associated
with a dependency to the subsequent task (it comprises the out-
put dependency on x). TAMPI uses the Nanos6 external events
API [47] to delay the release of the current task’s dependencies.
The call to TAMPI Iwait is non-blocking, so the task continues,
finishing immediately and freeing its data structures and stack.
Later, when the MPI request completes, it is not necessary to
unblock and re-schedule the first task. TAMPI will use the ex-
ternal events API to release its dependencies, at which point the
task on line 9 can begin execution.

3. Motivation

This section motivates our work through three variants of a
Gauss–Seidel 2D heat equation, shown in Figure 5: fork–join
MPI and OpenMP, asynchronous TAMPI and OpenMP/OmpSs-
2, and OmpSs-2@Cluster with distributed taskiter. The bench-
mark is an in-place 2D stencil calculation where each element
is updated based on the values of the elements above and to the
left from the current timestep and the elements to the right and

4

1 double matrix[NBY_LOCAL][NBX][BSY][BSX];

2 int main(int argc , char **argv)

3 {

4 int provided;

5 MPI_Init_thread(argc , argv , MPI_THREAD_MULTIPLE , &provided);

6 assert(provided == MPI_THREAD_MULTIPLE);

7 · · ·

8 for (int it=0; it < NUM_ITERATIONS; it++) {

9 MPI_Request request[NBX *3];

10 int count = 0;

11 if (rank != 0) {

12 // Send first compute row

13 for (x=1; x < NBX -1; x++) {

14 MPI_Isend (& matrix [1][x][0][BSY -1], BSX , MPI_DOUBLE ,

rank -1, bx+it*NBX , MPI_COMM_WORLD , &request[count

++]);

15 }

16 // Receive upper border

17 for (x=1; x < NBX -1; x++) {

18 MPI_Irecv (& matrix [0][x][0][BSY -1], BSX , MPI_DOUBLE ,

rank -1, bx+it*NBX , MPI_COMM_WORLD , &request[count

++]);

19 }

20 }

21 if (rank != rank_size - 1) {

22 // Receive lower border

23 for (x=1; x < NBX -1; x++) {

24 MPI_Irecv (& matrix[NBY_LOCAL -1][x][0], BSX , MPI_DOUBLE ,

rank+1, bx+it*NBX , MPI_COMM_WORLD , &request[count

++]);

25 }

26 }

27 MPI_Waitall(count , request , MPI_STATUSES_IGNORE);

28
29 for (int y=1; y<NBY_LOCAL -1; y++) {

30 for(int x=1; x<NBX -1; x++) {

31 #pragma omp task \

32 depend(in:matrix[y-1][x]) depend(in:matrix[y][x-1]) \

33 depend(in:matrix[y][x+1]) depend(in:matrix[y+1][x]) \

34 depend(inout:matrix[y][x]) \

35 {

36 GaussSeidelBlock(matrix , x, y);

37 }

38 }

39 }

40 #pragma omp taskwait

41 if (rank != rank_size -1) {

42 // Send last compute row

43 count = 0;

44 for (x=1; x < NBX -1; x++) {

45 MPI_Isend (& matrix[NBY_LOCAL -2][x][0], BSX , MPI_DOUBLE ,

rank -1, bx+it*NBX , MPI_COMM_WORLD , &request[count

++]);

46 }

47 MPI_Waitall(count , request , MPI_STATUSES_IGNORE);

48 }

49 }

50 }

(a) Fork–join MPI + OpenMP tasks

1 double matrix[NBY_LOCAL][NBX][BSY][BSX];

2 int main(int argc , char **argv)

3 {

4 int provided;

5 MPI_Init_thread(argc , argv , MPI_TASK_MULTIPLE , &provided);

6 assert(provided == MPI_TASK_MULTIPLE);

7 · · ·

8 for (int it=0; it < NUM_ITERATIONS; it++) {

9 if (rank != 0) {

10 // Send first compute row

11 for (x=1; x < NBX -1; x++) {

12 #pragma omp task depend(in:matrix[1][x])

13 {

14 MPI_Request request;

15 MPI_Isend (& matrix [1][x][0][BSY -1], BSX , MPI_DOUBLE ,

rank -1, bx+it*NBX , MPI_COMM_WORLD , &request);

16 TAMPI_Iwait (&request , MPI_STATUS_IGNORE);

17 }

18 }

19 // Receive upper border

20 for (x=1; x < NBX -1; x++) {

21 #pragma omp task depend(out:matrix[0][x])

22 {

23 MPI_Request request;

24 MPI_Irecv (& matrix [0][x][0][BSY -1], BSX , MPI_DOUBLE ,

rank -1, bx+it*NBX , MPI_COMM_WORLD , &request);

25 TAMPI_Iwait (&request , MPI_STATUS_IGNORE);

26 }

27 }

28 }

29 if (rank != rank_size - 1) {

30 // Receive lower border

31 for (x=1; x < NBX -1; x++) {

32 #pragma omp task depend(out:matrix[0][x])

33 {

34 MPI_Request request;

35 MPI_Irecv (& matrix[NBY_LOCAL -1][x][0], BSX , MPI_DOUBLE ,

rank+1, bx+it*NBX , MPI_COMM_WORLD , &request);

36 TAMPI_Iwait (&request , MPI_STATUS_IGNORE);

37 }

38 }

39 }

40 for (int y=1; y<NBY_LOCAL -1; y++) {

41 for(int x=1; x<NBX -1; x++) {

42 #pragma omp task \

43 depend(in:matrix[y-1][x]) depend(in:matrix[y][x-1]) \

44 depend(in:matrix[y][x+1]) depend(in:matrix[y+1][x]) \

45 depend(inout:matrix[y][x]) \

46 {

47 GaussSeidelBlock(matrix , x, y);

48 }

49 }

50 }

51 if (rank != rank_size -1) {

52 // Send last compute row

53 for (x=1; x < NBX -1; x++) {

54 #pragma omp task depend(in:matrix[0][x])

55 {

56 MPI_Request request;

57 MPI_Isend (& matrix[NBY_LOCAL -2][x][0], BSX , MPI_DOUBLE ,

rank -1, bx+it*NBX , MPI_COMM_WORLD , &request);

58 TAMPI_Iwait (&request , MPI_STATUS_IGNORE);

59 }

60 }

61 }

62 }

63 }

(b) Asynchronous TAMPI + OpenMP/OmpSs-2

1 double matrix[NBY][NBX][BSY][BSX];

2 int main(int argc , char **argv)

3 {

4 · · ·

5 nanos6_set_affinity (& matrix [1], (NBY -2) * NBX * BSY , BSX ,

nanos6_equpart_distribution , 0, NULL);

6 #pragma oss taskiter depend(weakinout:matrix)

7 for (int it=0; it < NUM_ITERATIONS; it++) {

8 for (int y=1; y<NBY -1; y++) {

9 for (int x=1; x<NBX -1; x++) {

10 #pragma oss task \

11 depend(in:matrix[y-1][x][BSY-1]) depend(in:matrix[y][x-1]) \

12 depend(in:matrix[y][x+1]) depend(in:matrix[y+1][x][0]) \

13 depend(inout:matrix[y][x]) \

14 {

15 GaussSeidelBlock(matrix , x, y);

16 }

17 }

18 }

19 }

(c) OmpSs-2@Cluster taskiter

Figure 5: Gauss–Seidel 2D heat equation using three different programming models: fork–join MPI + OpenMP tasks, asynchronous TAMPI + OpenMP/OmpSs-2
tasks and OmpSs-2@Cluster with distributed taskiter. Each element is updated based on the values above and to the left from the current timestep and the values to the
right and below from the previous timestep. The matrix is a grid of NBY×NBX blocks, each of size BSY×BSX. The MPI+OpenMP and TAMPI+OpenMP/OmpSs-
2 variants are hard-coded to distribute the processes by rows, and the number of local rows of blocks is equal to NBY LOCAL. The OmpSs-2@Cluster version
achieves similar performance to the TAMPI + OpenMP/OmpSs-2 version, with about one third the number of lines of code and much lower complexity.

5

Build task graph

Build task graph

Build task graph

· · ·

Partition Translate

Translate

Translate

· · ·

Fetch data

Fetch data

Fetch data

· · ·

Execute

Execute

Execute

· · ·

Release dependenciesRank 0

Rank 1

Rank N − 1

· · ·

Time

1 2 3 4 5 6

Figure 6: Illustration of the execution process for a distributed taskiter. This figure gives an overview of the sequence of steps and where they are executed, but it
does not quantify the relative durations of the steps, which are not to scale.

below from the previous timestep. The entire matrix is a grid
of NBY × NBX blocks, each of size BSY × BSX elements. It is
distributed among the processes cyclically by rows.

Figure 5a shows an implementation using fork–join paral-
lelism with MPI and OpenMP. The local part of the stencil cal-
culation has NBY LOCAL rows, including the single-row halos
at the top and bottom. The computation is done using tasks
with dependencies (lines 29 to 39 in Figure 5a) in order to up-
date all elements in a timestep using 2D wavefront parallelism.
The parallelism rises from zero at the beginning of the timestep
up to a maximum of the number of blocks along the shortest
dimension. It then drops back down to zero at the end of the
timestep, due to the taskwait on line 40.

Figure 5b shows an asynchronous TAMPI + OpenMP im-
plementation. This version eliminates the taskwait between
timesteps, and it has higher performance due to 3D wavefront
parallelism, which allows concurrent execution of tasks from
different timesteps. The parallelism rises from zero at the be-
ginning of the first timestep, and it stays at the maximum value
until close to the end of the last timestep. The cost is extra com-
plexity to encapsulate the sends and receives into tasks and use
TAMPI’s non-blocking API.

Figure 5c shows the OmpSs-2@Cluster implementation us-
ing taskiter. Whereas most of the code in the MPI + OpenMP
and TAMPI + OpenMP versions concern orchestration and mi-
cro-management of data distribution and communication, only
two declarative pieces of information have been introduced to
the OmpSs-2@Cluster version. Firstly, the call to nanos6 -
set affinity on line 5 describes the data affinity. This call does
not move data, but it hints to the runtime that the non-readonly
rows of the matrix ought to be distributed cyclically across the
ranks. Secondly, the accesses to the blocks above and below
the current block have been made more precise, since the task
only reads a single row of these blocks rather than the whole
block.3 The MPI + OpenMP and TAMPI + OpenMP/OmpSs-2
versions correctly perform data transfers of a single row of each
block, i.e, each of size BSX elements, since that is the only data
accessed by the neighboring rank. Without this change to the
distributed taskiter version, the oversized accesses on the tasks

3It is unnecessary to increase the precision of the blocks to the left and to
the right, due to the data distribution by rows among the nodes. But doing so
is straightforward using multidependencies [54] and would not introduce any
overheads during execution.

would mislead the runtime, forcing it to send whole blocks,
each of size BSY×BSX elements. We employ the fragmented
regions dependency system [43], which is enabled by default in
OmpSs-2@Cluster, allowing correct enforcement of dependen-
cies between tasks having accesses to full and partial blocks.

Overall, the number of lines of code in the OmpSs-2@Clus-
ter version with distributed taskiter is about about one third that
of the TAMPI + OpenMP version, and almost all of the code
relates to the actual Gauss–Seidel computation.

4. Programmer’s model

The programmer’s model for distributed taskiter is the same
as taskiter on SMP [6], except for the rules related to the defi-
nition of accesses:

Full definition of accesses: OmpSs-2@Cluster requires all
tasks to have a full specification of their accesses [3], so that
the runtime can program any necessary data transfers. This re-
quirement is inherited for taskiters, and it differs from the situa-
tion on SMP, where the taskiter only needs to be given accesses
when necessary to enforce ordering with its sibling tasks. Any
data that is only required by subtasks should be specified as a
weak access (defined in Section 2.1). Any data that is required
by the loop body or loop condition needs to be specified as a
strong (i.e., non-weak) access.

Precise definition of accesses: The task accesses give a
unified specification of the data accessed by the task, both for
task ordering and to program data transfers. These accesses
should precisely define the data that is needed by the task, in
order to avoid unnecessary data transfers (an example was given
in Section 3).

5. Implementation

The execution of a distributed taskiter is illustrated in Fig-
ure 6, which shows a timeline, from left to right, of the steps,
1 , 2 , · · · , 6 , executed by each rank. This figure is intended

to give an overview of the process, rather than quantifying the
relative durations of these steps, which are not to scale.

5.1. Compilation
Compilation is done in exactly the same way as taskiter on

SMP, as the programmer’s model in Section 4 does not require

6

1 #pragma oss taskiter depend(weakinout:x,y,a,b)

2 for(int it=0; it<NUM_ITERATIONS; it++) {

3 // Task 1

4 #pragma oss task depend(in:x,y) depend(out:a) node(0)

5 { · · · }

6 // Task 2

7 #pragma oss task depend(in:a,y) depend(out:b) node(1)

8 { · · · }

9 // Task 3

10 #pragma oss task depend(in:a,b) depend(out:x) node(0)

11 { · · · }

12 // Task 4

13 #pragma oss task depend(in:x,b) depend(out:y) node(1)

14 { · · · }

15 }

Figure 7: Example OmpSs-2@Cluster distributed taskiter implementation of
the program of Figure 3a, with the mapping from task to rank indicated using
the “node” clause.

any changes to the compiler. The compiler encapsulates the
loop body as a task, in a similar way to a taskloop or taskfor.
The taskiter task is passed to the runtime together with the loop
bounds and a flag to identify it as a taskiter.

5.2. Execute taskiter parent task to build full task graph

The taskiter becomes ready following the same condition as
any other task, i.e. as soon as all of its strong accesses, if any,
are satisfied. The execution of the taskiter begins at Step 1
of Figure 6. The original node (typically Rank 0) creates and
offloads a parentless copy of the taskiter to each other rank, and
then it executes the taskiter itself. By running the taskiter task,
each rank builds a local copy of the full task dependency graph
for a single iteration. When the taskiter has the unroll clause,
this “single iteration” may of course be more than one iteration
of the underlying loop.

5.3. Partition graph among nodes

Once Rank 0 has finished executing the taskiter task, and
has created all the subtasks, it performs Step 2 of Figure 6,
which partitions the dependency graph for execution by the pro-
cesses. Our approach can leverage any partitioning algorithm,
and it does not require a fixed or deterministic method, unlike
StarPU-MPI [8] and OmpSs@cloudFPGA [24] (see Section 8).
The current prototype uses a static partition controlled by the
node clause.

Figure 7 updates the example program of Figure 3a to use
OmpSs-2@Cluster with distributed taskiter, and it adds the node
clause on each task to indicate the partition that will be used in
the rest of this section. Tasks 1 and 3 are executed on Rank 0
and Tasks 2 and 4 are executed on Rank 1, enabling wavefront
parallelism across two nodes.

5.4. Translate to create local graph

Step 3 of Figure 6 translates the full dependency graph into
the local directed cyclic task graph (DCTG) for execution by
the current process, and it pre-computes the MPI data transfers
involving the current process. This step is done concurrently
by all ranks, as illustrated in Figure 6. There are two sub-steps:
(1) insert communication tasks and (2) create the local DCTG.

5.4.1. Insert communication tasks
Communication among ranks is done by dedicated tasks, in

order to exploit the existing task graph to control the ordering
and overlap of communication and computation. A send task
has an in access on the data to send, since the MPI send only
needs to read the latest version of the data. A receive task has
an out access, since the MPI receive will update its buffer with
the new version of the data.

The algorithm to add the send and receive tasks is shown in
Figure 8. It starts from the top map, which is an existing data
structure that maps each region to the first task that accesses
it. The top map is always present using the fragmented regions
dependency system, as a way to link between a task’s predeces-
sors and its subtasks, and for the discrete dependency system,
it is inherited from the usual SMP taskiter support. When using
the regions dependency system, an extra pass is required to fully
fragment the top map to match the finest access granularity.

Figure 9a shows the output of the algorithm of Figure 8
for Rank 0 of the partitioned program in Figure 7. The tasks
that were created locally by the taskiter parent in Step 1 , but
will not be executed locally on Rank 0, i.e., Task 2 and Task 4
are grayed out. We assume that the virtual addresses of the
variables are in the order a, b, x, y. The loop on line 3 pro-
cesses each region in the top map in virtual address order, in
this case starting with a. Next, the while loop on line 8 con-
siders each task access that contains a, starting with the out
access of Task 1. This is the first write to a (lastWriter is
none on line 20) so the empty set of initialReaders is cap-
tured on line 21: since the first access is a write, it will be not
necessary to perform any data transfers for the cyclic edges.
The next access to the same region is the in access of Task 2.
This task reads the data, but it is not yet present on Rank 1
(access.rank < readerRanks on line 9), so it requires a data
transfers from Rank 0, the lastWriter, to Rank 1, which exe-
cutes the task. Since the current rank is Rank 0, a send task
is created on line 13. Following the same procedure, Rank 1,
creates the matching receive task on line 15. This completes
all the accesses to a, so the loop on line 3 continues for b,
which follows a similar process, except that the current rank,
Rank 0, needs to create a receive task. The process for x is
slightly different, because the first access to x is the in access
of Task 1, which reads the value from the as-yet-unknown last
writer in the previous iteration. No send–receive pair is created
(lines 11 to 15 are skipped), but Rank 0 is added to readerRanks
on line 17. Later, once all accesses have been considered, the
loop on line 26 will check the initialReader, rank 0. Since
lastWriter is also rank 0, no send-receive pair is needed. Fi-
nally, considering y, the first access is the in of Task 0, and the
loop on line 26 will also check the initialReader, Rank 0. But
this time, since the lastWriter is Task 4 on Rank 1, there is no
copy of this data on Rank 0, so a receive task for the cyclic
read-after-write is created on line 31. This also means that it-
eration 0 on the current rank will require a valid copy of the
data before the taskiter. This is recorded by adding the region
to initialValues on line 32.

The algorithm in Figure 8 ensures that the iterations of each

7

1 mpiTag← 0 ▷ Current MPI tag
2 initialValues← ∅ ▷ Data that may need fetching for iteration 0
3 for all (region, access) ∈ topMapAccesses do
4 lastWriter ← none ▷ Last writer of region by sequential order
5 readerRanks← ∅ ▷ Ranks with valid copy of latest version of region
6 initialReaderRanks← ∅ ▷ Reading ranks of region from prev. iteration
7 ▷ Add send and receive tasks for non-cyclic dependencies ◁
8 while access , none do
9 if access.type , OUT and access.rank < readerRanks then

10 ▷ Task reads data, but it is not yet present locally ◁
11 if lastWriter , none then
12 if currentRank = lastWriter.rank then
13 Insert send task of region with tag mpiTag before access.task

14 else if currentRank = access.rank then
15 Insert receive task of region with tag mpiTag before

access.task
16 mpiTag← mpiTag + 1
17 readerRanks← readerRanks ∪ access.rank
18 if access.type = OUT or access.type = INOUT then
19 ▷ Task writes data ◁
20 if lastWriter = none then
21 initialReaderRanks← readerRanks
22 lastWriter ← access.task
23 readerRanks← {currentRank}
24 access← access.next
25 ▷ Add send and receive tasks for cyclic dependencies ◁
26 for all initialReaderRank ∈ initialReaderRanks do
27 if initialReaderRank < readerRanks then
28 if currentRank = lastWriter.rank then
29 Insert send task of region with tag mpiTag at end
30 else if currentRank = initialReaderRank then
31 Insert receive task of region with tag mpiTag at end
32 initialValues← initialValues ∪ region
33 mpiTag← mpiTag + 1
34 readerRanks← readerRanks ∪ initialReaderRank

Figure 8: Insertion of communication (send and receive) tasks. Commu-
nication is done by tasks, ensuring asynchronous execution with maximum
communication–computation overlap. This deterministic algorithm runs on all
ranks on the same full task graph, so sends and receives on different ranks will
always match.

send and receive task are always serialized, irrespective of the
algorithm used to execute the tasks (Section 5.5, which seri-
alizes the iterations of any particular task in any case). Each
receive is serialized due to the write-after-write dependency on
its out access. Each send is serialized due to the write-after-read
dependency from the send task (which has an in access) to the
lastWriter (defined when the send task is created on line 13) in
the next iteration, which has an out or inout access. MPI sends
and receives of the same data in different iterations are there-
fore posted one at a time and in order. The MPI tags for cor-
responding sends and receives always match, since the sending
and receiving ranks follow the same deterministic algorithm on
the same task graph. The MPI tag is given by mpiTag, which is
initialized to zero on line 1 and incremented on lines 16 and 33.

5.4.2. Create the local DCTG
The local dependency graph, which is a sequential graph

on task accesses, is converted into the local directed cyclic task
graph (DCTG). The process is the same as for SMP, and the
result, for the example program, is shown in Figure 9b.

5.4.3. Fetch input data
As soon as Step 3 has finished on the current node, Step 4

fetches all of the input data that is needed by the taskiter. There
is no need for a global barrier between Steps 3 and 4 . The
algorithm in Figure 8 has already determined, in initialValues,
all the regions whose initial version, before the taskiter, is read
by the first iteration of at least one task. These regions will re-
quire fetching to this node, unless the node already has a copy
of the data. The runtime uses its normal data transfer mecha-
nism, which checks whether a data transfer is actually needed,
merges contiguous data transfers and programs the data trans-
fers using non-blocking MPI calls.

5.5. Execute loop iterations

Once the data transfers in Step 4 , if any, have completed
on the current node, Step 5 proceeds to execute all iterations
of the body of the taskiter. It is not normally necessary to have a
global barrier between Steps 4 and 5 , but we add one in our
experiments, in order to cleanly separate the startup overhead
and the time per iteration. This extra barrier has little effect on
the total execution time.

The local graph is executed in the same way as taskiter on
SMP. Communication tasks are ordinary tasks, except that the
task body is implemented inside the runtime system rather than
the user code. The body of the communication task simply
posts the appropriate non-blocking MPI send or receive. The
runtime defers the release of the dependencies to the succes-
sor tasks, which would otherwise happen immediately, until the
MPI request completes. Completion of MPI requests is peri-
odically tested by the same dedicated thread that is used for
OmpSs-2@Cluster message completion [3].

5.5.1. Non-constant number of iterations
If the number of iterations is not known before the execu-

tion of the loop, then a control task is inserted, in a similar way
to the approach on SMP 2.3.4 The control task on Rank 0 in-
herits all the strong accesses of the taskiter, ignoring the weak
accesses. The control task on Rank 0 also has a dependency
on the previous iteration of the control task on the same rank.
The control tasks on all the other ranks only have a dependency
on the control task on Rank 0, which is used to copy the value
of the condition to all other ranks. Similarly to the SMP imple-
mentation, if the condition is false, then the control task on each
rank cancels the rest of the taskiter. If the taskiter has the unroll
clause, then the control task on rank 0 is strided in the same way
as SMP, in order to support overlapping of tasks from different
iterations.

5.5.2. Release accesses
Once all local tasks on a remote (non-Rank 0) rank have

completed all iterations, then a Task Finished message is sent to
Rank 0 in the normal way. Once Rank 0 has completed its own

4Our prototype implementation does not yet support non-constant iteration
counts.

8

Taskiter

1

Send
a

2

Recv
b

3

Send
x

4

Recv
y

a b x y

out in in

in

in out in

out

in in out

in

in outin

out

(a) Local dependency graph on Rank 0 after inserting the send and receive tasks. The tasks
not executed on Rank 0, i.e., Task 2 and Task 4, are disabled and colored in gray.

1

Send
a

Recv
y

3

Send
x

Recv
b

a, x

a, x

a
a y

y x
x b

b

(b) Local DCTG on Rank 0.

Figure 9: Regular dependency graph for a single iteration and directed cyclic
task graph for Rank 0 of the example program of Figure 7.

iterations and received notification from all other nodes, it com-
pletes the taskiter and releases its accesses. Since Rank 0 knows
the partitioning of tasks across ranks (as does every rank), the
data locations in the dependency system are updated to corre-
spond to the rank that executes the last writer. If there is no last
writer, because the data is only read, then the original location
is not modified.

6. Evaluation methodology

6.1. Hardware and software platform
The experiments in this paper were performed on up to

32 nodes of the general-purpose block of the MareNostrum 4
supercomputer [9]. MareNostrum 4 comprises 3456 compute
nodes, each with two 24-core Intel Xeon Platinum sockets. We
use normal memory capacity nodes, which have 96 GB physi-
cal memory (2 GB per core). The interconnect is 100 Gb/s Intel
Omni-Path with a fat tree. GCC 7.2.0 was used to compile all
benchmarks and the modified Nanos6@Cluster runtime. All
benchmark kernels were in separate source files, identical for
all programming models and compiled with the same compiler
flags. The runtime uses Intel MPI 2018.4, and the benchmarks
use the BLAS functions provided by Intel MKL 2018.4. All

experiments use one MPI process per socket; i.e., two MPI pro-
cesses per node. Each data point shows the average and stan-
dard deviation across five runs in different batch jobs, which we
confirmed to have different node allocations. The same batch
job was used to test all programming models using the same
node allocation, to ensure fairness.

6.2. Benchmarks
The benchmarks are listed in Table 1. All are executed in

configurations of 2 processes per node (one per NUMA node),
following previous work [3], which found that using one pro-
cess per socket led to better and less variable results, due to the
more effective use of NUMA locality. Results are given for 1 to
32 nodes, for a total of up to 64 MPI processes.

multi-matvec is a sequence of identical dense double-preci-
sion matrix–vector multiplications, with the matrix distributed
by rows and without dependencies between iterations.5. It has
fine-grained tasks with complexity O(n2) and no inter-node data
transfers. multi-matmul is a sequence of dense double-preci-
sion matrix–matrix multiplications, with larger O(n3) tasks and
also no inter-node data transfers. jacobi is an iterative double-
precision Jacobi solver for dense strictly diagonally dominant
systems. It is equivalent to repeatedly pre-multiplying a vector
by a dense square matrix. It has the same O(n2) complexity as
multi-matvec, but an all-to-all communication pattern, making
it a particularly good fit for fork–join parallelism. heat-gauss
is the Gauss–Seidel variant of the 2D heat equation stencil com-
putation discussed in Section 3. It exhibits 2D or 3D wavefront
parallelism and has the potential to overlap tasks from multi-
ple iterations, making it a good fit for asynchronous task par-
allelism. heat-jacobi is the same 2D heat equation with Jacobi
updates. This version has two working arrays and embarrass-
ingly parallel computations inside each timestep to update the
array. It is well suited to fork–join parallelism.

7. Results

7.1. Strong scalability
Figure 10 shows the overall results for strong scaling. The

five rows of charts correspond to the five benchmarks described
in Section 6.2. In all plots the x-axis is the number of nodes,
always with two MPI processes per node; i.e., one process per
socket. The left-hand column of charts gives the fixed overhead
(seconds on the y-axis), which is independent of the number of
iterations, and the right-hand column of charts gives the per-
formance per iteration for the body of the loop (GFLOPS/s on
the y-axis). The colors distinguish the four programming mod-
els: blue for fork–join MPI + OpenMP, brown for TAMPI +
OmpSs-2, red for the original OmpSs-2@Cluster implementa-
tion, and green for the distributed taskiter. All points use the
block size that gives the best performance per iteration for the
body of the loop, for that benchmark and implementation. All
data points include error bars, but in almost all cases the error
bars are too small to see.

5Prior work [3] referred to these same benchmarks as matvec and matmul

9

Fork–join MPI+OpenMP Asynchronous TAMPI+OmpSs-2 OmpSs-2@Cluster Distributed Taskiter
Overhead Performance Per Iteration

m
ul

ti-
m

at
ve

c

(a) multi-matvec fixed overhead (b) multi-matvec performance per iteration

m
ul

ti-
m

at
m

ul

(c) multi-matmul fixed overhead (d) multi-matmul performance per iteration

ja
co

bi

(e) jacobi fixed overhead (f) jacobi performance per iteration

he
at

-g
au

ss

(g) heat-gauss fixed overhead (h) heat-gauss performance per iteration

he
at

-ja
co

bi

(i) heat-jacobi fixed overhead (j) heat-jacobi performance per iteration

Figure 10: Strong scaling results with two processes per node (one per socket). The five rows correspond to the five benchmarks. The left-hand column gives the
fixed overhead and the right-hand column gives the performance per iteration, excluding the fixed overhead. We see that the maximum overhead of distributed
taskiter is just 1.1 seconds (jacobi on 32 nodes). Distributed taskiter has performance per iteration that matches or exceeds fork–join MPI + OpenMP and is on-a-par
with asynchronous TAMPI + OmpSs-2. The performance per iteration far exceeds that of the original OmpSs-2@Cluster implementation.

10

Benchmark Description Characteristics Parameters

multi-matvec Repeated dense matrix–vector multiplication Small tasks and no communication Matrix size: 32,768×32,768 elements
Number of iterations: 500

multi-matmul Repeated dense matrix–matrix multiplication Large tasks and no communication Matrix size: 32,768×32,768 elements
Number of iterations: 6

jacobi Jacobi iteration [3] All-to-all communication, good fit for fork–
join parallelism

Matrix size: 32,768×32,768 elements
Number of iterations: 400

heat-gauss 2D stencil computation with Gauss–Seidel updates Nearest-neighbor communication, wavefront
parallelism suited to asynchronous tasks

Matrix size: 32,768×32,768 elements
Number of iterations: 100

heat-jacobi 2D stencil computation with Jacobi updates Nearest-neighbor communication, good fit for
fork–join parallelism

Matrix size: 32,768×32,768 elements
Number of iterations: 100

Table 1: Evaluation benchmarks

Figure 10a shows the overhead for multi-matvec, which
has a maximum value of just 0.11 seconds on 32 nodes. This
overhead corresponds to Steps 1 to 4 and Step 6 in Sec-
tion 5, and for this benchmark it scales roughly linearly with
the number of nodes, since the optimal block size corresponds
to a small number of tasks per core, and all tasks always have
the same number of accesses. Looking at Figure 10b, we see
that, after paying this small cost, the distributed taskiter vari-
ant achieves similar scaling behaviour to the baseline fork–join
MPI version. There is a slight improvement over fork–join MPI
by 7.0% on 32 nodes, likely because of minor differences be-
tween the OpenMP and Nanos6@Cluster runtimes. This re-
sult is a large improvement compared with the original OmpSs-
2@Cluster implementation, which scales to just 8 nodes and is
6 times slower than fork–join MPI on 32 nodes. This bench-
mark has no inter-node communication, so the poor scaling
of the OmpSs-2@Cluster implementation is due to the control
message overhead for task offloading and dependency manage-
ment, which is entirely eliminated by the distributed taskiter ap-
proach. Since there is no inter-node communication, the asyn-
chronous TAMPI + OmpSs-2 results have been omitted.

Figure 10c shows the fixed overhead for multi-matmul, which
has a maximum value of just 0.029 seconds on 32 nodes. Again,
the overhead scales roughly linearly with the number of nodes.
As seen in Figure 10d, all three variants scale similarly for this
benchmark. The drop in scalability beyond 4 nodes is due to un-
usual behavior from the MKL library, which achieves approxi-
mately 3× higher throughput for block sizes of 256 elements or
more. For a 32768 × 32768 matrix, the optimal block size does
not fully use the available compute resources when there are 8
or more nodes.

Figure 10e shows that the fixed overhead for jacobi grows
roughly quadratically from 1 to 16 nodes. This is due to the
benchmark’s all-to-all communication, which means that the
number of tasks and the number of accesses per task both grow
roughly linearly in the number of cores, which combine to cause
the quadratic growth. Beyond 16 nodes, it is no longer benefi-
cial to subdivide the tasks. The maximum overhead on 32 nodes
is 1.1 seconds. In Figure 10f, we see that the distributed task-
iter approach matches the fork–join MPI version, within 4.4%
on up to 16 nodes, but it drops to 15% below the fork–join MPI
version on 32 nodes. There are two reasons for this. Firstly, the
fork–join MPI version uses collective communication, whereas

distributed taskiter uses point-to-point communication. Sec-
ondly, the distributed taskiter has asynchronous communica-
tion inside tasks instead of fork–join parallelism. We see that
the results match closely, within 3%, those for the asynchro-
nous TAMPI + OmpSs-2 version on up to 32 nodes, which also
has point-to-point communication inside tasks. Future work
may investigate ways to use collective communication or merge
communication into existing tasks. In any case, the results al-
ready greatly outperform the original OmpSs-2@Cluster, which
is 9.6 times slower than fork–join MPI + OpenMP.

Figure 10g shows the overhead for heat-gauss. Because
of the 3D wavefront parallelism, it is most efficient to use the
smallest block size that has acceptable performance overheads.
The overhead is therefore roughly constant, rising from 0.47
seconds on 1 node to 0.74 seconds on 32 nodes. Figure 10h
shows that the fork–join MPI + OpenMP version has poor per-
formance, limited by the 2D wavefront parallelism inside each
timestep. By enabling 3D wavefront parallelism, the asynchro-
nous TAMPI + OmpSs-2 version achieves much higher perfor-
mance, reaching performance 11.4 times faster than fork–join
MPI + OpenMP on 32 nodes. The distributed taskiter version
achieves similar performance, at 11.0 times faster than fork–
join MPI + OpenMP on 32 nodes. In contrast, the OmpSs-
2@Cluster implementation has even worse performance than
fork–join MPI + OpenMP, being 2.4 times slower, on 32 nodes.

Figure 10i shows the overhead for heat-jacobi, the Jacobi
version of the 2D heat-equation stencil computation. Each it-
eration is embarrassingly parallel, and the optimal block size
is roughly constant from 1 to 32 nodes. The overhead is al-
most constant, rising to a maximum of just over 1.0 seconds on
32 nodes. Finally, in Figure 10j, all versions except the original
OmpSs-2@Cluster implementation achieve similar scaling to at
least 32 nodes. The distributed taskiter version is within 5.0%
of the performance per iteration of fork–join MPI, which is a
dramatic improvement in comparison with the original OmpSs-
2@Cluster implementation which is 15 times slower than fork–
join MPI.

Overall, these results show that the fixed overheads of dis-
tributed taskiter are acceptable, with a maximum of 1.1 sec-
onds. The majority of this time is in the Step 3 graph transla-
tion described in Section 5.4, which is done by our implemen-
tation on one thread, but could easily be parallelized across all
24 threads in each process. After paying that small cost, the

11

performance-per-iteration matches or exceeds fork–join MPI +
OpenMP, with a slight drop of 15% only for the jacobi bench-
mark on 32 nodes. For heat-gauss, which benefits from asyn-
chronous communication, the performance is similar to asyn-
chronous TAMPI + OmpSs-2, at 11.0 times faster than fork–
join MPI + OpenMP. In four out of the five benchmarks, the
performance-per-iteration far exceeds that of the original Omp-
Ss-2@Cluster, which is up to 15 times slower than fork–join
MPI + OpenMP.

7.2. Effect of number of iterations on overall performance

Figure 11 shows the effect of the number of loop iterations
on the overall performance. The five charts correspond to the
five benchmarks, in all cases executing on 32 nodes (64 pro-
cesses). The x-axis is the number of iterations, on a log scale.
The y-axis is the overall performance, in GFLOPS/s, which, un-
like the right-hand column of Figure 10, includes the fixed over-
head. These results were observed afresh, not estimated syn-
thetically by combining the left-hand and right-hand columns
of Figure 10.

We see that, including the startup overhead, the distributed
taskiter implementation achieves higher performance for multi-
matmul, heat-gauss and heat-jacobi than the original OmpSs-
2@Cluster version from the first iteration. For multi-matvec, it
exceeds the original version from 10–100 and 100-1000 itera-
tions, respectively. The distributed taskiter version has slightly
higher performance than fork–join MPI + OpenMP, from 100
or more iterations for multi-matvec and from the first iteration
for multi-matmul (note the zoomed y-axis for multi-matmul, in
order to expose the small differences between versions). For
jacobi, distributed taskiter’s performance steadily increases up
to about 15% below that of fork–join MPI + OpenMP. For
heat-gauss, the two versions that allow asynchronous overlap
of timesteps, i.e., the TAMPI + OmpSs-2 and distributed task-
iter versions, have performance growing over the first approx-
imately 1000 iterations, due to the increasing ability to over-
lap tasks from different timesteps through 3D wavefront par-
allelism. Finally, for heat-jacobi distributed taskiter reaches
close to the performance of MPI +OpenMP after about 1000 it-
erations.

It is important to note that the startup overhead has not been
optimized in our current distributed taskiter implementation.
As remarked above, most of the overhead is in the Step 3
graph translation described in Section 5.4. This is currently
done by a single thread, but it could be parallelized across all
24 threads in each process.

8. Related work

8.1. MPI, PGAS and hybrid approaches

Message Passing Interface (MPI) [37] is by far the most
widely used standard for writing HPC applications, and it is
well supported on all HPC systems. It is based on a distributed
memory model with processes communicating via messages.
Partitioned Global Address Space (PGAS) languages [38, 53,
33] and libraries [28, 20] provide a global address space, so

Fork–join MPI+OpenMP Asynchronous TAMPI+OmpSs-2
OmpSs-2@Cluster Distributed Taskiter

(a) multi-matvec on 32 nodes

(b) multi-matmul on 32 nodes

(c) jacobi on 32 nodes

(d) heat-gauss on 32 nodes

(e) heat-jacobi on 32 nodes

Figure 11: Overall performance, including all overheads, as a function of the
number of iterations. For multi-matmul, heat-gauss and heat-jacobi, the dis-
tributed taskiter version outperforms the original OmpSs-2@Cluster version
from the first iteration (unrolled by two). In many cases, few iterations are re-
quired to achieve performance close to fork–join MPI + OpenMP.

12

that the processes access remote data directly, through language
constructs or an API, rather than communicating via messages.
This requires a more advanced understanding of memory con-
sistency and synchronization. Both approaches, MPI and PGAS,
place a high burden of data distribution, synchronization and
load balancing on the programmer.

“MPI + X” models, which combine MPI with shared mem-
ory parallelism via OpenMP [40], OpenACC [39], CUDA [35],
or similar, have been under study for at least twenty years [45,
30]. Many applications use a fork–join approach, where pro-
cesses alternate between sequential communication and parallel
computation phases, which hinders inter- and intra-node par-
allelism. Habanero-C MPI (HCMPI) [22] automatically sup-
ports fine-grained overlapping of communication and compu-
tation, as it converts each MPI call into an asynchronous task.
TAMPI [48] (see Section 2.4) is a more flexible approach that
allows tasks to safely and efficiently call MPI primitives. All
MPI+X approaches suffer from the fundamental issues of MPI,
i.e., the programmer has to handle data distribution, synchro-
nization and load balancing, as well as inserting message sends
and receives. They also require the programmer to split the par-
allelism between shared and distributed memory models.

DASH [27] provides a C++ template library for distributed
memory, which is based on tasks in a PGAS model. Each pro-
cess concurrently creates its own task dependency graph. Tasks
primarily access local memory, but they can also have depen-
dencies on memory that is owned by another rank. Execution
is divided into phases, and dependencies between tasks in dif-
ferent processes are only resolved at the boundaries between
phases. Each rank communicates its non-local dependencies to
the rank that owns the data, and the data values are exchanged
as soon as they are available. This model supports tasks in a
global memory space, but the programmer is still responsible
for data distribution and load balancing. It is also necessary to
divide the program into phases, during which there is no inter-
node communication.

8.2. Distributed tasking
Distributed tasking approaches execute tasks with depen-

dencies in a single task graph, which provides unambiguous
dataflow semantics among all tasks of all processes. The task
graph may exist only implicitly, based on a model of the struc-
ture of typical programs, but more commonly the model uses
a Sequential Task Graph (STG) formulation. In the latter case,
the STG is constructed sequentially at runtime based on anno-
tations or API calls. This may either be done concurrently on
all processes, creating a duplicate task graph in each process, or
the task graph may be created by a single process, which dis-
tributes work to the other processes. The whole unrolled graph
for an STG program is built task-by-task, but it typically never
exists in its completed form, since tasks are added (constructed)
and removed (after execution) concurrently.

Implicit task graph creation: PaRSEC [17, 29] is a dis-
tributed task-based model designed for scalability on distributed
heterogeneous architectures. It is the basis for the DPLASMA
library for dense linear algebra, which was the original motiva-
tion for PaRSEC. Its original formulation builds a parameter-

ized Directed Acyclic Graph (DAG) [23], which describes the
dependencies between tasks in an algebraic way in terms of the
iteration variables. This model is very complex to develop pro-
grams, and it is not as expressive as other task models, being
tailored for affine loops that are amenable with polyhedral anal-
ysis [19]. Our approach also avoids unrolling the whole depen-
dency graph, but it is simpler and specialized for iterative appli-
cations, and it requires just one pragma to identify such a loop.

Concurrent and duplicated task graph creation: Several ap-
proaches build the same task graph, containing all top-level
tasks and dependencies, concurrently on all processes. All pro-
cesses independently determine the same deterministic map-
ping of tasks to rank and they execute only the tasks that are
mapped to the current rank. Processes also insert appropriate
send and receive primitives to pass data to and from tasks exe-
cuted by other ranks.

StarPU-MPI [8] extends StarPU [5] to support distributed
memory tasking using MPI. In this framework, top-level tasks
are mapped to nodes using an owner-computes model. Yar-
Khan’s [55] extension of QUARK uses a deterministic map-
ping of task to rank based on data distribution, and it also uses
MPI for communication. TBLAS [52] takes a similar approach
to target clusters of CPUs, each with multiple GPUs. OmpSs@-
cloudFPGA [24] targets clusters of FPGAs with direct FPGA-
to-FPGA communication and hardware acceleration to mitigate
the cost of filtering task accesses. DuctTeip builds hierarchical
data structures and task graphs, mitigating the sequential bottle-
neck through a task nesting approach. PaRSEC [17, 29] also
supports Dynamic Task Discovery (DTD) as an alternative to
the Parameterized Task Graph (PTG). DTD constructs a gen-
eral task graph from a sequential program, unrolling the full
task dependency graph on each process. This is similar to the
previously-described approaches, and it suffers from the same
bottleneck and flexibility issues.

In all the above approaches, all ranks must independently
determine the same mapping of task to rank, which makes it
impossible to dynamically load balance. Every rank has to
check the dependencies of every top-level task in every itera-
tion, which limits the scalability for fine- and medium-grained
tasks. Our approach has the advantage that it does not require
task nesting with the possibility to support it (if needed), it is
compatible with partitioning and re-partitioning of the cyclic
task graph, and the entire overhead to build and manage the task
graph and insert communication is amortized across all loop it-
erations. Finally, it interoperates with the fully-general OmpSs-
2@Cluster approach, which starts from a single sequential thread.

Sequential task graph creation: Other approaches build the
top-level task graph on a single node, with task offloading to
other nodes. OMPC [56] extends the LLVM OpenMP imple-
mentation of the target library with new target for offloading
tasks, and introduces the concept of a “remote device” for of-
floading tasks to remote nodes. OmpSs-1@Cluster [18] and
its successor OmpSs-2@Cluster (Section 2.2) extend BSC’s
OmpSs programming model to support distributed memory clus-
ters. Both create the dependency graph on a single core, al-
though OmpSs-2@Cluster has improved support for task nest-
ing as a way to parallelize the creation of tasks on multiple

13

ranks to reduce the pressure on the first rank. Our approach
is compatible with OmpSs-2@Cluster, but it avoids all of the
control message overhead inside the timesteps of iterative ap-
plications (see Section 2.2.2). We compare our results against
OmpSs-2@Cluster in detail in Section 7, and demonstrate that
while the existing OmpSs-2@Cluster approach is a viable alter-
native to MPI+OpenMP on up to 4 or 8 nodes, our approach is
close to MPI + OpenMP on up to at least 32 nodes.

Legion [16] is a framework for parallel tasking computa-
tions on distributed heterogeneous systems. Execution also be-
gins on a single rank, and tasks are offloaded to other ranks. It
supports task nesting and adopts a data-centric approach, where
developers describe the structure and properties of data, so that
the scheduler can optimize data locality. Programs can either
use Legion’s native C++ API or the high-productivity Regent
language [50]. It has similar disadvantages to OmpSs-2@Clus-
ter, in terms of scalability and the need to use task nesting to get
good performance.

8.3. Other approaches
Charm++ [41] is an asynchronous execution model for

HPC, based on migratable objects known as “chares”. Chares
communicate by exchanging messages, resulting in a form of
concurrent and asynchronous execution that has some similari-
ties to task execution without dependencies. HPX [31] is a C++
library that supports parallel computations using an interface
that aims to be compatible with the C++ Standard Template
Library (STL). It adopts an asynchronous and distributed task-
based model that is expressed using futures, and which sup-
ports data dependencies among futures. X10 [21] is an object-
oriented programming language for high-productivity program-
ming that spawns asynchronous computations, with the pro-
grammer responsible for PGAS data distribution.

8.4. Scripting and workflows
Many scripting and workflow frameworks also adopt a dis-

tributed tasking approach with a directed acyclic graph of tasks
and dependencies. COMPSs [34] is a Java, C/C++ and Python
framework to run parallel applications on clusters, clouds and
containerized platforms. It is a sequential task-based model
similar to OmpSs, but dependencies are tracked through files
or objects rather than the program’s virtual address space. Pe-
gasus [25] is another workflow management system that uses
a DAG of tasks and dependencies. GPI-Space [46] is a fault-
tolerant execution platform for data-intensive applications. It
supports coarse-grained tasks that helps decouple the domain
user from the parallel execution of the problem. In all these
approaches, the task granularity is much coarser than that tar-
geted by our approach, with individual tasks having duration up
to hours or days. It is viable for a single master node to manage
all task scheduling and data transfers.

9. Conclusions

Despite being very productive, distributed Sequential Task
Flow (STF) models suffer from limited performance and scala-
bility for fine- and medium-grained tasks. This paper presents

an extension to OmpSs-2@Cluster that addresses this issue for
applications with common iterative patterns, while remaining
interoperable with the OmpSs-2@Cluster model. While the ex-
isting OmpSs-2@Cluster implementation scales to only about
4 or 8 nodes with medium-scale tasks, our approach scales to
at least 32 nodes, with a maximum slowdown of 15%, com-
pared with fork–join MPI + OpenMP. When the application
has the potential to overlap iterations, for example the 2D heat
equation stencil calculation with Gauss–Seidel updates, our ap-
proach discovers significantly more parallelism than fork–join
MPI + OpenMP. This results in up to 11.0 times higher per-
formance on 32 nodes, which is on-a-par with state-of-the-art
asynchronous TAMPI + OmpSs-2. As such, the model com-
bines the productivity of STF models with the performance of
state-of-the-art MPI+X approaches, by exploiting the iterative
nature of scientific applications. It also avoids the synchroniza-
tion and deadlock issues of an MPI+X approach. Future work
will build on this foundation through automatic partitioning, as
well as repartitioning for dynamic load balance and malleabil-
ity.

10. Acknowledgements

This research has received funding from the European Union’s
Horizon 2020/EuroHPC research and innovation programme
under grant agreement No 955606 (DEEP-SEA). It is also sup-
ported by the Spanish State Research Agency - Ministry of Sci-
ence and Innovation under contract PID2019-107255GB-C21/-
MCIN/AEI/10.13039/501100011033 and Ramon y Cajal fel-
lowship RYC2018-025628-I/MCIN/AEI/10.13039/501100011-
033 and by “ESF Investing in your future”, as well as by the
Generalitat de Catalunya (2017-SGR-1414).

References

[1] “Clang: a C language family frontend for LLVM,” Jan 2024, accessed:
2024-01-18. [Online]. Available: https://clang.llvm.org/

[2] “The LLVM compiler infrastructure,” Jan 2024, accessed: 2024-01-18.
[Online]. Available: https://llvm.org/

[3] J. Aguilar Mena, O. Shaaban, V. Beltran, P. Carpenter, E. Ayguadé,
and J. Labarta, “OmpSs-2@Cluster: Distributed memory execution
of nested OpenMP-style tasks,” in European Conference on Parallel
Processing: Euro-Par, 2022. [Online]. Available: https://doi.org/10.
1007/978-3-031-12597-3 20

[4] J. Aguilar Mena, O. Shaaban, V. Lopez, M. Garcia, P. Carpenter,
E. Ayguadé, and J. Labarta, “Transparent load balancing of MPI
programs using OmpSs-2@Cluster and DLB,” in 51st International
Conference on Parallel Processing (ICPP), 2022. [Online]. Available:
https://doi.org/10.1145/3545008.3545045

[5] E. Agullo, O. Aumage, M. Faverge, N. Furmento, F. Pruvost,
M. Sergent, and S. P. Thibault, “Achieving high performance on
supercomputers with a sequential task-based programming model,”
IEEE Transactions on Parallel and Distributed Systems, 2017. [Online].
Available: https://doi.org/10.1109/TPDS.2017.2766064

[6] D. Álvarez and V. Beltran, “Optimizing iterative data-flow scientific
applications using directed cyclic graphs,” IEEE access, 2023. [Online].
Available: https://doi.org/10.1109/ACCESS.2023.3269902

[7] D. Álvarez, K. Sala, M. Maroñas, A. Roca, and V. Beltran,
“Advanced synchronization techniques for task-based runtime systems,”
in Proceedings of the 26th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. New York, NY, USA: Association
for Computing Machinery, 2021, p. 334–347. [Online]. Available:
https://doi.org/10.1145/3437801.3441601

14

https://clang.llvm.org/
https://llvm.org/
https://doi.org/10.1007/978-3-031-12597-3_20
https://doi.org/10.1007/978-3-031-12597-3_20
https://doi.org/10.1145/3545008.3545045
https://doi.org/10.1109/TPDS.2017.2766064
https://doi.org/10.1109/ACCESS.2023.3269902
https://doi.org/10.1145/3437801.3441601

[8] C. Augonnet, O. Aumage, N. Furmento, R. Namyst, and S. Thibault,
“StarPU-MPI: Task programming over clusters of machines enhanced
with accelerators,” in European MPI Users’ Group Meeting. Springer
Berlin Heidelberg, 2012, pp. 298–299. [Online]. Available: https:
//doi.org/10.1007/978-3-642-33518-1 40

[9] Barcelona Supercomputing Center, “MareNostrum 4 (2017) System Ar-
chitecture,” 2017. [Online]. Available: https://www.bsc.es/marenostrum/
marenostrum/technical-information

[10] ——. (2021) Influence in OpenMP - OmpSs-2 specification. [Online].
Available: https://pm.bsc.es/ftp/ompss-2/doc/spec/introduction/openmp.
html

[11] ——. (2021) Nanos6. [Online]. Available: https://github.com/bsc-pm/
nanos6

[12] ——. (2021) OmpSs-2 specification. [Online]. Available: https:
//pm.bsc.es/ftp/ompss-2/doc/spec/

[13] ——. (2021) Taskiter. [Online]. Available: https://github.com/bsc-pm/
ompss-2-cluster-releases#taskiter

[14] ——, “OmpSs-2@Cluster releases,” 2022. [Online]. Available: https:
//github.com/bsc-pm/ompss-2-cluster-releases

[15] ——. (2024) OmpSs-2 LLVM compiler infrastructure. [Online].
Available: https://github.com/bsc-pm/llvm

[16] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing
locality and independence with logical regions,” in SC ’12: Proceedings
of the International Conference on High Performance Computing,
Networking, Storage and Analysis, 2012, pp. 1–11. [Online]. Available:
https://doi.org/10.1109/SC.2012.71

[17] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Luszczek,
and J. Dongarra, “Dense linear algebra on distributed heterogeneous
hardware with a symbolic DAG approach,” Lawrence Berkeley National
Lab.(LBNL), Berkeley, CA (United States), Tech. Rep., 2012. [Online].
Available: https://www.osti.gov/servlets/purl/1173290

[18] J. Bueno, J. Planas, A. Duran, R. M. Badia, X. Martorell, E. Ayguadé, and
J. Labarta, “Productive programming of GPU clusters with OmpSs,” in
IEEE 26th International Parallel and Distributed Processing Symposium,
5 2012. [Online]. Available: https:doi.org//10.1109/IPDPS.2012.58

[19] P. Cardosi and B. Bramas, “Specx: a c++ task-based runtime
system for heterogeneous distributed architectures,” arXiv preprint
arXiv:2308.15964, 2023.

[20] B. Chapman, T. Curtis, S. Pophale, S. Poole, J. Kuehn, C. Koelbel,
and L. Smith, “Introducing OpenSHMEM: SHMEM for the PGAS
community,” in Proceedings of the Fourth Conference on Partitioned
Global Address Space Programming Model, 2010, pp. 1–3. [Online].
Available: https://doi.org/10.1145/2020373.2020375

[21] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: An object-oriented
approach to non-uniform cluster computing,” in Proceedings of the 20th
Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, ser. OOPSLA ’05. New York,
NY, USA: Association for Computing Machinery, 2005, p. 519–538.
[Online]. Available: https://doi.org/10.1145/1094811.1094852

[22] S. Chatterjee, S. Tasırlar, Z. Budimlic, V. Cavé, M. Chabbi, M. Grossman,
V. Sarkar, and Y. Yan, “Integrating asynchronous task parallelism with
MPI,” in 2013 IEEE 27th International Symposium on Parallel and
Distributed Processing. IEEE, 2013, pp. 712–725. [Online]. Available:
https://doi.org/10.1109/IPDPS.2013.78

[23] M. Cosnard and M. Loi, “Automatic task graph generation techniques,”
in Proceedings of the Twenty-Eighth Annual Hawaii International Con-
ference on System Sciences, vol. 2, 1995, pp. 113–122 vol.2.

[24] J. M. de Haro, R. Cano, C. Álvarez, D. Jiménez-González, X. Mar-
torell, E. Ayguadé, J. Labarta, F. Abel, B. Ringlein, and B. Weiss,
“OmpSs@cloudFPGA: An FPGA task-based programming model with
message passing,” in 2022 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2022, pp. 828–838.

[25] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. Berriman, J. Good, A. Laity, and D. S. Katz,
“Pegasus: A framework for mapping complex scientific workflows onto
distributed systems,” Scientific Programming, vol. 13, no. 3, pp. 219–237,
Jan 2005. [Online]. Available: https://doi.org/10.1155/2005/128026

[26] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell,
X. Martorell, and J. Planas, “OmpSs: a proposal for programming
heterogeneous multi-core architectures,” Parallel processing letters,

vol. 21, no. 02, pp. 173–193, 2011. [Online]. Available: https:
//doi.org/10.1142/S0129626411000151

[27] K. Fürlinger, J. Gracia, A. Knüpfer, T. Fuchs, D. Hünich, P. Jungblut,
R. Kowalewski, and J. Schuchart, “DASH: Distributed data structures
and parallel algorithms in a global address space,” in Software
for Exascale Computing-SPPEXA 2016-2019. Springer International
Publishing, 07 2020, pp. 103–142. [Online]. Available: https:
//doi.org/10.1007/978-3-030-47956-5 6

[28] D. Grünewald and C. Simmendinger, “The GASPI API specification and
its implementation GPI 2.0,” in 7th International Conference on PGAS
Programming Models, vol. 243, 2013, p. 52.

[29] R. Hoque, T. Herault, G. Bosilca, and J. Dongarra, “Dynamic task
discovery in PaRSEC: a data-flow task-based runtime,” in Proceedings
of the 8th Workshop on Latest Advances in Scalable Algorithms
for Large-Scale Systems, 11 2017, pp. 1–8. [Online]. Available:
https://doi.org/10.1145/3148226.3148233

[30] G. Jost, H.-Q. Jin, F. F. Hatay et al., “Comparing the OpenMP, MPI,
and hybrid programming paradigm on an SMP cluster,” in European
Workshop on OpenMP and Applications 2003, 2003. [Online]. Available:
https://ntrs.nasa.gov/citations/20030107321

[31] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey,
“HPX: A task based programming model in a global address
space,” in 8th International Conference on Partitioned Global Address
Space Programming Models, 2014. [Online]. Available: https:
//doi.org/10.13140/2.1.2635.5204

[32] J. Klinkenberg, P. Samfass, M. Bader, C. Terboven, and M. Müller,
“CHAMELEON: Reactive load balancing for hybrid MPI+OpenMP task-
parallel applications,” Journal of Parallel and Distributed Computing,
vol. 138, 12 2019. [Online]. Available: https://doi.org/10.1016/j.jpdc.
2019.12.005

[33] J. Lee, M. T. Tran, T. Odajima, T. Boku, and M. Sato, “An extension of
XcalableMP PGAS lanaguage for multi-node GPU clusters,” in Euro-Par
2011: Parallel Processing Workshops: CCPI, CGWS, HeteroPar, HiBB,
HPCVirt, HPPC, HPSS, MDGS, ProPer, Resilience, UCHPC, VHPC,
Bordeaux, France, August 29–September 2, 2011, Revised Selected
Papers, Part I 17. Springer, 2012, pp. 429–439. [Online]. Available:
https://doi.org/10.1007/978-3-642-29737-3 48

[34] F. Lordan, E. Tejedor, J. Ejarque, R. Rafanell, J. Alvarez, F. Marozzo,
D. Lezzi, R. Sirvent, D. Talia, and R. M. Badia, “ServiceSs:
An interoperable programming framework for the cloud,” Journal
of grid computing, vol. 12, no. 1, 2014. [Online]. Available:
https://doi.org/10.1007/s10723-013-9272-5

[35] D. Luebke, “CUDA: Scalable parallel programming for high-
performance scientific computing,” in 2008 5th IEEE in-
ternational symposium on biomedical imaging: from nano
to macro. IEEE, 2008, pp. 836–838. [Online]. Available:
https://doi.org/10.1109/ISBI.2008.4541126

[36] J. A. Mena, “Methodology for malleable applications on dis-
tributed memory systems,” Ph.D. dissertation, Universitat Politècnica
de Catalunya, 2022. [Online]. Available: http://dx.doi.org/10.5821/
dissertation-2117-380814

[37] MPI Forum, “MPI documents.” [Online]. Available: https://www.
mpi-forum.org/docs/

[38] R. W. Numrich and J. Reid, “Co-array Fortran for parallel programming,”
in ACM SIGPLAN Fortran Forum, vol. 17, no. 2. ACM New
York, NY, USA, 1998, pp. 1–31. [Online]. Available: https:
//doi.org/10.1145/289918.289920

[39] OpenACC Organization, “OpenACC: Directives for accelerators,” 2011.
[Online]. Available: http://www.openacc-standard.org

[40] OpenMP Architecture Review Board, “OpenMP Application Pro-
gramming Interface, Version 5.2,” 11 2021, accessed: 2022-04-
19. [Online]. Available: https://www.openmp.org/wp-content/uploads/
OpenMP-API-Specification-5-2.pdf

[41] Parallel Programming Lab, Dept of Computer Science, University
of Illinois. (2023) Charm++ documentation. [Online]. Available:
https://charm.readthedocs.io/en/latest/index.html

[42] J. M. Perez, V. Beltran, J. Labarta, and E. Ayguadé, “Improving
the integration of task nesting and dependencies in OpenMP,”
in 2017 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 2017, pp. 809–818. [Online]. Available: https:
//doi.org/10.1109/IPDPS.2017.69

15

https://doi.org/10.1007/978-3-642-33518-1_40
https://doi.org/10.1007/978-3-642-33518-1_40
https://www.bsc.es/marenostrum/marenostrum/technical-information
https://www.bsc.es/marenostrum/marenostrum/technical-information
https://pm.bsc.es/ftp/ompss-2/doc/spec/introduction/openmp.html
https://pm.bsc.es/ftp/ompss-2/doc/spec/introduction/openmp.html
https://github.com/bsc-pm/nanos6
https://github.com/bsc-pm/nanos6
https://pm.bsc.es/ftp/ompss-2/doc/spec/
https://pm.bsc.es/ftp/ompss-2/doc/spec/
https://github.com/bsc-pm/ompss-2-cluster-releases#taskiter
https://github.com/bsc-pm/ompss-2-cluster-releases#taskiter
https://github.com/bsc-pm/ompss-2-cluster-releases
https://github.com/bsc-pm/ompss-2-cluster-releases
https://github.com/bsc-pm/llvm
https://doi.org/10.1109/SC.2012.71
https://www.osti.gov/servlets/purl/1173290
https:doi.org//10.1109/IPDPS.2012.58
https://doi.org/10.1145/2020373.2020375
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1109/IPDPS.2013.78
https://doi.org/10.1155/2005/128026
https://doi.org/10.1142/S0129626411000151
https://doi.org/10.1142/S0129626411000151
https://doi.org/10.1007/978-3-030-47956-5_6
https://doi.org/10.1007/978-3-030-47956-5_6
https://doi.org/10.1145/3148226.3148233
https://ntrs.nasa.gov/citations/20030107321
https://doi.org/10.13140/2.1.2635.5204
https://doi.org/10.13140/2.1.2635.5204
https://doi.org/10.1016/j.jpdc.2019.12.005
https://doi.org/10.1016/j.jpdc.2019.12.005
https://doi.org/10.1007/978-3-642-29737-3_48
https://doi.org/10.1007/s10723-013-9272-5
https://doi.org/10.1109/ISBI.2008.4541126
http://dx.doi.org/10.5821/dissertation-2117-380814
http://dx.doi.org/10.5821/dissertation-2117-380814
https://www.mpi-forum.org/docs/
https://www.mpi-forum.org/docs/
https://doi.org/10.1145/289918.289920
https://doi.org/10.1145/289918.289920
http://www.openacc-standard.org
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://charm.readthedocs.io/en/latest/index.html
https://doi.org/10.1109/IPDPS.2017.69
https://doi.org/10.1109/IPDPS.2017.69

[43] J. M. Perez, R. M. Badia, and J. Labarta, “Handling task dependencies
under strided and aliased references,” in Proceedings of the 24th
ACM International Conference on Supercomputing, 2010, pp. 263–274.
[Online]. Available: https://doi.org/10.1145/1810085.1810122

[44] J. Pérez, R. M. Badia, and J. Labarta, “A dependency-aware task-based
programming environment for multi-core architectures,” 2008, pp.
142–151. [Online]. Available: https://doi.org/10.1109/CLUSTR.2008.
4663765

[45] R. Rabenseifner and G. Wellein, “Comparison of parallel programming
models on clusters of SMP nodes,” in Modeling, Simulation and
Optimization of Complex Processes: Proceedings of the International
Conference on High Performance Scientific Computing, March 10–
14, 2003, Hanoi, Vietnam. Springer, 2005, pp. 409–425. [Online].
Available: https://doi.org/10.1007/3-540-27170-8 31

[46] T. Rotaru, M. Rahn, and F.-J. Pfreundt, “MapReduce in GPI-Space,” in
Euro-Par 2013: Parallel Processing Workshops. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2014, pp. 43–52. [Online]. Available:
https://doi.org/10.1007/978-3-642-54420-0 5

[47] K. Sala, S. Macià, and V. Beltran, “Combining one-sided communications
with task-based programming models,” in 2021 IEEE International
Conference on Cluster Computing (CLUSTER), 2021, pp. 528–541.
[Online]. Available: https://doi.org/10.1109/Cluster48925.2021.00024

[48] K. Sala, X. Teruel, J. M. Perez, A. J. Peña, V. Beltran, and J. Labarta,
“Integrating blocking and non-blocking MPI primitives with task-based
programming models,” Parallel Computing, vol. 85, pp. 153–166, 2019.
[Online]. Available: https://doi.org/10.1016/j.parco.2018.12.008

[49] O. Shaaban, J. Aguilar, V. Beltran, P. Carpenter, E. Ayguadé,
and J. L. Mancho, “Automatic aggregation of subtask accesses
for nested OpenMP-style tasks,” in 2022 IEEE 34th International
Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD). IEEE, 2022, pp. 315–325. [Online]. Available: https:
//doi.org/10.1109/SBAC-PAD55451.2022.00042

[50] E. Slaughter, W. Lee, S. Treichler, M. Bauer, and A. Aiken, “Regent: a
high-productivity programming language for HPC with logical regions,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2015, pp. 1–12. [Online].
Available: https://doi.org/10.1145/2807591.2807629

[51] L. Smith and M. Bull, “Development of mixed mode MPI / OpenMP
applications,” Sci. Program., vol. 9, no. 2,3, p. 83–98, aug 2001.

[52] F. Song and J. Dongarra, “A scalable framework for heterogeneous GPU-
based clusters,” in Proceedings of the twenty-fourth annual ACM sympo-
sium on Parallelism in algorithms and architectures, 2012, pp. 91–100.

[53] UPC Consortium, “Berkeley UPC – Unified Parallel C,” 2024. [Online].
Available: https://upc.lbl.gov/

[54] R. Vidal, M. Casas, M. Moretó, D. Chasapis, R. Ferrer, X. Martorell,
E. Ayguadé, J. Labarta, and M. Valero, “Evaluating the impact of
OpenMP 4.0 extensions on relevant parallel workloads,” in OpenMP:
Heterogenous Execution and Data Movements: 11th International
Workshop on OpenMP, IWOMP 2015, Aachen, Germany, October 1-2,
2015, Proceedings 11. Springer, 2015, pp. 60–72. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-24595-9 5

[55] A. YarKhan, “Dynamic task execution on shared and distributed
memory architectures,” Ph.D. dissertation, University of Tennessee,
2012. [Online]. Available: https://trace.tennessee.edu/cgi/viewcontent.
cgi?article=2774&context=utk graddiss

[56] H. Yviquel, M. Pereira, E. Francesquini, G. Valarini, G. Leite,
P. Rosso, R. Ceccato, C. Cusihualpa, V. Dias, S. Rigo, A. Souza,
and G. Araujo, “The OpenMP Cluster programming model,” in
Workshop Proceedings of the 51st International Conference on Parallel
Processing, ser. ICPP Workshops ’22. New York, NY, USA:
Association for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3547276.3548444

16

https://doi.org/10.1145/1810085.1810122
https://doi.org/10.1109/CLUSTR.2008.4663765
https://doi.org/10.1109/CLUSTR.2008.4663765
https://doi.org/10.1007/3-540-27170-8_31
https://doi.org/10.1007/978-3-642-54420-0_5
https://doi.org/10.1109/Cluster48925.2021.00024
https://doi.org/10.1016/j.parco.2018.12.008
https://doi.org/10.1109/SBAC-PAD55451.2022.00042
https://doi.org/10.1109/SBAC-PAD55451.2022.00042
https://doi.org/10.1145/2807591.2807629
https://upc.lbl.gov/
http://dx.doi.org/10.1007/978-3-319-24595-9_5
https://trace.tennessee.edu/cgi/viewcontent.cgi?article=2774&context=utk_graddiss
https://trace.tennessee.edu/cgi/viewcontent.cgi?article=2774&context=utk_graddiss
https://doi.org/10.1145/3547276.3548444

	Introduction
	Background
	OmpSs-2, Nanos6 and LLVM
	OmpSs-2@Cluster
	Tasks, offloading and scheduling
	Control messages and global write ordering

	Taskiter
	Task-aware MPI (TAMPI)

	Motivation
	Programmer's model
	Implementation
	Compilation
	Execute taskiter parent task to build full task graph
	Partition graph among nodes
	Translate to create local graph
	Insert communication tasks
	Create the local DCTG
	Fetch input data

	Execute loop iterations
	Non-constant number of iterations
	Release accesses

	Evaluation methodology
	Hardware and software platform
	Benchmarks

	Results
	Strong scalability
	Effect of number of iterations on overall performance

	Related work
	MPI, PGAS and hybrid approaches
	Distributed tasking
	Other approaches
	Scripting and workflows

	Conclusions
	Acknowledgements

