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ABSTRACT

Disaggregated memory is under investigation as a way to break the
rigid boundaries between node memory hierarchies in order to pro-
vide memory as a system-wide pooled resource. The resource man-
ager allocates the system’s disaggregated memory to jobs, based
on the memory requirements defined by the user at job submission
time. It is hard for the user to know the job’s precise peak memory
footprint, and prior work has shown that users have an incentive
to overestimate their needs. This overestimation leads to a signif-
icant overallocation of memory, and the majority of the physical
memory in the system is wasted. This paper presents a way to
reclaim much of this overallocated memory. We extend the Slurm
job scheduler to dynamically reallocate memory, according to the
job’s current memory footprint. We enhance an existing Slurm
simulator to model this situation and combine publicly available
traces to model an HPC system on up to 1490 nodes. Our results
show that the dynamic memory provisioning approach increases
the throughput per dollar by up to 38%, compared to a system with
static allocation of disaggregated memory.
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1 INTRODUCTION

High-Performance Computing (HPC) applications have widely
varying per-node memory footprints due to diverse application
characteristics, differing problem sizes, and strong scaling [21, 26,
49].In a typical HPC cluster architecture, memory is tightly coupled
to the CPUs running the jobs, leading to stranded memory capacity
and an inefficient use of the memory resources. In fact, 25% to 76%
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of the total memory capacity typically remains idle [18, 23, 28, 30].
Disaggregated memory offers a way to improve memory utiliza-
tion, as memory becomes a pool that can be dynamically composed
to match the needs of the workloads [22]. It enables fine-grained
allocation of memory capacity to jobs [16, 21, 24, 30, 37, 48], while
maintaining the cost-effectiveness and scalability of a cluster archi-
tecture [18].

HPC job schedulers generally allocate resources statically [29], so
disaggregated memory resource management systems require the
user to specify the peak memory demands at submission time [29,
30, 45]. It is difficult for users to know the precise maximum memory
footprint, and they have an incentive to overestimate this figure to
avoid an out-of-memory error, which would terminate the job [21,
34, 38, 39]. A recent paper investigated the incentive for users of
a disaggregated memory system to provide accurate memory esti-
mates. They showed a tragedy of the commons effect: for example, a
single user overestimating their memory demands by 60% increases
their response time (from submission to completion) by just 8%, but
the combined result of everybody doing the same would be a 5 times
increase in response time and 25% reduction in throughput [46].

This paper makes a case for dynamic reallocation of disaggre-
gated memory. While we see a small benefit from the difference
between the job’s peak and average memory consumption, there is
a large benefit from the difference between the job’s peak memory
consumption and the memory demand that the user would specify
in the job submission. We propose a strategy for dynamic memory
allocation that reclaims overallocated memory and we evaluate
the policy using the Slurm simulator [1]. The simulation approach
allows work to proceed before the availability of a large-scale HPC
system with disaggregated memory and complete software stack, as
well as enabling rapid at-scale evaluation of multiple scenarios with-
out occupying a real system. We find that even assuming a conser-
vative approach where the users correctly estimate their maximum
memory usage, system performance increases by up to 8%. When
memory demands are overestimated by 60%, the improvement in
performance for an underprovisioned system is up to 13%. Moreover,
employing the dynamic approach results in equivalent performance
to the baseline while using fewer resources, specifically 40% less
memory provisioning for comparable throughput, within 5%.

Dynamic resource assignment has been explored in the context
of malleability [12, 17]. Unlike approaches for malleability, our ap-
proach does not need any modifications to the application. Other
studies investigate disaggregated memory but are done at a rela-
tively small scale [22, 31]. In contrast, our simulation approach has
allowed the evaluation to be performed on up to 1490 nodes. To the
best of our knowledge, no prior studies have tackled the specific
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problem of cluster-level dynamic job scheduling on large-scale dis-
aggregated memory systems. A more extensive comparison with
related work is in Section 5.

In summary, we make the following contributions:

(1) We extend Slurm’s memory allocation policy and the Slurm sim-
ulator to support disaggregated memory with dynamic memory
reallocation.

(2) We present a methodology to create complete HPC job traces

with dynamic memory footprints from publicly available datasets.

(3) We evaluate a set of simulated scenarios using synthetic and
real-world traces and investigate how the job memory allocation
affects overall system throughput, response time, utilization,
and cost-benefit in HPC systems.

(4) We demonstrate that dynamic memory assignment delivers
improvements up to 13% in throughput, 38% in throughput-per-
dollar, and up to 69% reduction in median job response time,
compared to a static policy, when there are imbalanced mem-
ory usage and overestimated demands on underprovisioned
systems.

Please note that our dynamic memory allocation scheme and job
trace generation methodology are accessible as open source [6, 44].
We encourage others to not only replicate our work but also to
contribute to its further enhancement.

2 DISAGGREGATED MEMORY MANAGEMENT

2.1 Simulation infrastructure for disaggregated
memory

Slurm [43] is an open-source, scalable resource management system
widely used in HPC. Jobs are scheduled by Slurm to nodes that can
satisfy the requested core and memory resources [18]. Allocation of
nodes is by default exclusive, meaning that unused resources can-
not be assigned to another job, given the possible negative impact
of inter-workload interference [28, 30].

We leverage the Slurm simulator [1, 19], which provides a scal-
able environment to develop and evaluate HPC job scheduling
policies. It takes as input a job trace based on the Standard Work-
load Format (SWF) [2, 10]. Slurm simulator employs most of Slurm’s
original source code, enabling an accurate evaluation that captures
all parameters and behavior that occur in a real environment.

Zacarias et al. [45] extend Slurm to allocate disaggregated mem-
ory using a static policy. Their policy tries to run the job on nodes
with enough free memory. If this is not possible, then it will choose
nodes with the most free memory and borrow the remaining mem-
ory from other nodes. A node that has already lent memory can still
run new jobs, as long as it has lent in total no more than half of its
total memory capacity. At that point, the node temporarily becomes
a memory node that can lend memory but not run new jobs. All
memory allocation is done based on the memory request in the job
submission. Any job that exceeds its memory request is killed.

The policy of Zacarias et al. quantifies the performance slow-
down due to remote memory access latency and bandwidth con-
tention using a contention model [45, 47]. Each application is char-
acterized by a sensitivity curve, relating memory bandwidth con-
tention to performance as well as a contentiousness figure, which
measures the memory bandwidth at full performance. The model

uses remote memory bandwidth since remote accesses do not create
cache contention in their disaggregated memory system. Applica-
tion profiling is only needed for the simulation-based evaluation
methodology, and it is not an input to the resource management
policy that would be used in production.

2.2 Dynamic memory allocation policy

We enhanced Slurm simulator, extended for disaggregated memory
by Zacarias et al. [45], to support dynamic memory allocation. This
allowed us to develop and evaluate the dynamic memory allocation
policy without requiring a large-scale dedicated HPC system with
disaggregated memory (which is impractical as the technology is
still in its infancy). Slurm uses a configurable architecture with an
extensive set of plugins and a centralized manager (or controller),
Slurmctld, which allocates resources to jobs, monitors job execution,
and mediates contention to resources through a queue of pending
jobs. Each compute node executes an instance of the Slurmd dae-
mon, which communicates with the controller to receive work and
manage job execution on the node.

Figure 1a depicts our memory allocation scheme in the context of
the Slurm resource manager. The scheme is divided into the Monitor,
Decider, Actuator, and Executor modules, and it works as follows.
The initial allocation of a job is done in the same way as Zacarias et
al., based on the memory request in the job’s submission script. But
once the job begins, its actual memory consumption is monitored
over time, by the Monitor module in Slurmd, which runs on every
node. The memory usage information is collected by the system for
all running jobs. Prior work [7, 42] has already demonstrated low
overhead for data collection to track job executions, with sampling
intervals on the order of seconds. The updating interval is a critical
parameter, as overly frequent adjustments incur additional memory
management overheads whereas infrequent adjustments fail to
accurately capture the actual memory usage. In our work, we update
the memory usage on average every 5 minutes, which is the same
as that used in [42]. The usage information is passed to the Slurm
controller, which updates the job memory allocations.

When Slurm receives the updated current memory consumption
for a particular node in a job, it will make a decision based on the
current allocation (Decider module). Next, the memory will be up-
dated by the Actuator module. If the current memory usage on the
node is lower than the current allocation, the resource manager will
deallocate memory. It will deallocate remote memory before deallo-
cating local memory. On the other hand, if the new usage is higher
than the current allocation, the resource manager will allocate mem-
ory locally, if possible, and then remotely if necessary. The idea is
to maximize the local-to-remote ratio, thus decreasing the impact
of remote memory accesses. Finally, the controller will update the
job’s access to physical memory on the node using the Executor
module, which runs on each node. This module will reset memory
capacity constraints available to the job locally and remotely.

We assume the system has a proper allocation management that
will prioritize local memory rather than remote memory. Therefore,
it should have an efficient mechanism for moving the accessed data
to the local memory, while unused data will be in the remote region.
An important management question is what to do when the system
runs out of memory. Dynamic memory allocation intentionally
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(b) Evaluation of dynamic disaggregated memory using Slurm
simulator.

Figure 1: Proposed dynamic allocation of disaggregated mem-
ory and its integration into Slurm and Slurm simulator.

allows the peak memory demands of the running jobs to exceed the
system’s total physical memory. When a job increases its memory
usage, the system may not have enough free memory to satisfy its
needs. An invalid approach would be to block the job until memory
becomes available, but this would clearly risk deadlock.

Two valid approaches for dealing with jobs running out of mem-
ory are Fail/Restart (F/R) and Checkpoint/Restart (C/R). In both
approaches, the Actuator terminates the job, releases its resources,
and resubmits the job to execute later. F/R restarts the job from the
beginning whereas C/R restarts from a recent checkpoint. We may
expect C/R to perform better, but it is more complex. Most C/R li-
braries require the application to control checkpointing and restart.
Nevertheless, we found that out-of-memory errors at the system
level are rare. In fact, in the most extreme scenario,! less than 1%
of jobs fail due to insufficient memory. We conclude that F/R is
sufficient, and present all results using the F/R approach. Neverthe-
less, in production, the proposed dynamic memory allocation may
sometimes cause jobs to fail repeatedly, due to abnormal system

1100% large jobs, 50% system, +100% overestimation (see Section 3).

load or an application with outlier phases allocating memory. In
order to mitigate this problem, the resource manager can take sev-
eral actions to ensure fairness. One approach would be to increase
the job’s priority and allocate additional resources after a specified
number of failures. Alternatively, the resource manager could opt
to initiate the job without dynamic resource allocation, instead
assigning resources to the job in a static and guaranteed manner.

2.3 Dynamic memory allocation in the Slurm
simulator

Figure 1b shows our approach to evaluate the dynamic allocation
of disaggregated memory using the Slurm simulator. It is based on
the work of Zacarias et al. [45], and our modifications are depicted
as orange boxes. The functions that are partially implemented or
adapted to run in a simulation environment rather than a real sys-
tem are represented with dotted boxes. The Decider module receives
the memory usage from the offline memory usage trace (details
in Section 3.2), rather than receiving the memory status from the
nodes in the cluster. This step mimics the Monitor module feeding
the current memory usage to the dynamic memory allocation pol-
icy to enforce the memory usage in case a job exceeds its memory
allocation. Our extension works by executing the following steps:
once the system has jobs running, the simulator will calculate at
which simulated time it must issue commands to update the jobs.
To calculate the expected simulation time it uses the job’s progress,
which is its elapsed running time. Since multiple jobs run concur-
rently, the simulator will use the job’s earliest progress to update
the timer to enforce the new usage in the system.

Once the simulation reaches a particular time, it issues com-
mands to update the jobs whose progress is within the period.
A command specifies the node identification and its new mem-
ory usage. The resource manager then receives a list with the job
and usage of each node to apply the new allocation. The Actuator
module then allocates or deallocates memory to match the node’s
current memory usage. We consider the memory demand to be the
maximum memory usage in the time period between the current
progress and the next update, as represented in the original trace.
Next, the Actuator module applies the contention model to update
the simulation and job duration, and the calculated job progress is
sent to the Executor module. Since the simulated Slurmd daemon
is a simplified version that emulates job execution for all nodes in
the system, it only updates the job duration and the queue of jobs
being simulated instead of actually reconfiguring memory capacity
locally and remotely.

3 METHODOLOGY
3.1 Job traces

We used three sources of job traces, which are summarized in
Table 1 and described in more detail below:

3.1.1  Grizzly trace. In 2019, Los Alamos National Lab (LANL) re-
leased an HPC memory usage trace, which details the memory
usage of three HPC clusters in the period from late 2018 through
early 2019 [5, 28]. We chose the dataset for the largest system,
Grizzly [4], a mid-range TOP 500 supercomputer with 1490 nodes,
each with 128 GB DRAM. The complete Grizzly dataset consists



Table 1: Summary of data provided by the job traces.

Trace Domain Submission Memory Num. Job  Memory
times request nodes duration trace
Grizzly [5, 28] HPC X X v v v
CIRNE [11, 45] HPC v v v v 3
Google [40] Cloud X x! v v V2

1. Some records in the Google trace have the memory request, but most do not.
2. The Google memory trace is normalized to the largest machine (we assumed 12 TB).

of 53.4 GB of (uncompressed) data, which comprises over 70, 000
jobs and 560 million records. The memory usage over time is col-
lected using the Lightweight Distributed Metric Service (LDMS) [7],
which gives a snapshot, collected every ten seconds on each node,
of the current job and the free and active memory. There is no
information from the job scheduler, such as submission time, re-
quested memory, or the type of job. Since each job is identified
using a unique ID, it is possible to identify parallel jobs running
on multiple nodes and therefore deduce the job’s number of nodes
and duration [28]. As shown in Table 1, the Grizzly trace provides
all necessary information except job submission times, memory
requests, and the slowdown model.

3.1.2  CIRNE model. The CIRNE Comprehensive Model [11] gen-
erates a synthetic HPC job trace based on the job arrival pattern,
time limits, numbers of nodes, system loads, and time durations
observed in real environments. We use the extended model from
Zacarias et al. [45], which also characterizes the slowdown of each
job as a function of disaggregated memory accesses and contention.
As shown in Table 1, it provides all parameters required by our
methodology except for the memory trace of dynamic memory
consumption over time.

3.1.3  Google trace. In 2020, Google released detailed job traces
from eight of its Borg cells for the entire month of May 2019 [40].
Each Borg cell is a collection of machines that together operate as
a single management unit. We use only the data from cell b, which,
according to [40], has the largest proportion of batch jobs. Each
entry in the trace is either an alloc set, which describes a resource
reservation, or a single job submission, which describes the compu-
tation to run and the resources it needs. Each job may run several
tasks, which inherit properties such as the priority and resource
request [40]. Jobs are classified according to their priority and sched-
uling class, i.e. latency sensitivity, distinguishing user-facing service
jobs vs. non-production or batch jobs [42]. The memory usage on
each node is sampled once per second and recorded as average and
maximum values over 5-minute windows [42].

Some hardware characteristics in the Google trace have been
obfuscated for confidentiality reasons. For instance, memory sizes
are normalized relative to the largest machine memory capacity [42].
It was reported that the maximum capacity of a system in operation
at the time was 12 TB [3], so we used this figure to denormalize the
data. As shown in Table 1, after denormalizing the memory usage,
this trace provides all necessary information except job submission
times and memory requests.

3.2 Generating the job traces

None of the traces described in Section 3.1 provide all of the infor-
mation that is required for the analysis. Our approach is to generate

two sets of traces. The first is based on LANL’s Grizzly trace, aug-
mented by the job submission times and model from the CIRNE
model. The second uses the Google trace shaped by HPC job sta-
tistics from CIRNE and Archer [41]. Both traces use the slowdown
model from Zacarias et al [45].

3.2.1 Adapting the Grizzly trace. We sampled the Grizzly dataset
(see Section 3.1.1), to obtain a smaller trace that was feasible to
simulate. Figure 2 shows all the one-week periods in the Grizzly
trace, in terms of CPU utilization (on the x-axis), maximum job
node-hours (on the y-axis of the left-hand plot) and maximum
job memory usage (on the y-axis of the right-hand plot). The CPU
utilization was calculated as the total node—hours of the jobs divided
by the total node-hours over the period. The simulated periods
are shown as blue triangles and the remaining periods are shown
as grey dots. We took a random sampling of the weeks with the
utilization of 70% or more, which is representative of HPC [28]. We
then randomly chose seven periods to simulate. Figure 2 shows
that the chosen periods are representative of the important periods
during which utilization is relatively high.

The trace of memory consumption over time is reduced in size
using the Ramer-Douglas-Peucker (RDP) algorithm [13, 32]. We
generated the submission times using the CIRNE Comprehensive
Model [11]. Although the job’s actual peak memory consumption
is known, the memory demand that the user would specify in the
job submission script is unknown. We therefore provide a sweep on
the overestimation factor, from +0% (demand equals peak memory
use) to +100% (demand is double the peak memory use). The job
type is needed by the multi-node slowdown model [47] described
above. We match the job to a profiled application by minimizing
the Euclidean distance of the size and runtime.

Max node hour (s) Max memory usage (MB)
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Figure 2: Sampling the Grizzly trace. Each point represents a
1-week period. Simulated periods, depicted as blue triangles,
are representative of weeks with CPU utilization > 70%.

3.22  Synthetic model plus Google trace. We generate a set of syn-
thetic input files using the CIRNE Comprehensive Model [11] (Sec-
tion 3.1.2) jointly with the per-job memory traces from the Google
trace (Section 3.1.3). The overall process is shown in Figure 3. The
first four steps follow the methodology of Jokanovic et al. [19] as
extended by Zacarias et al. [45]. We first generate a synthetic trace
using the CIRNE Model (Step 1). We select the job from a pool
of applications that have been previously profiled regarding size,
runtime, memory bandwidth, read/write ratio, and local/remote
access memory ratio (Step 2). We map each real application to the
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Figure 3: Augmenting the workload trace with real application data and per-job memory usage from the Google trace. Method-

ology adapted and extended from [19, 45].

nearest profiled job based on the Euclidean distance between their
sizes and execution times (Step 3) and finally sort the trace by job
arrival time (Step 4).

The remaining steps in Figure 3 are new. Since the synthetic
trace does not specify the memory request, we follow the memory
request distribution of the Archer supercomputer [41] (Step 5). The
distribution is displayed in Table 2. We then map the job to a Google
job, by minimizing the the Euclidean distance of size, runtime, and
memory demand to obtain the trace of memory consumption over
time (Step 6). This trace can be long, so we use the RDP [13, 32]
algorithm to reduce the number of data points. We then filter the
trace to obtain the target proportion of large-memory jobs (Step 7)
and generate the memory usage traces and job trace binaries needed
by the simulator (Steps 8 and 9).

The Google trace contains a large range of jobs in a cloud envi-
ronment, and it required some adaptation before it could be used.
Since HPC jobs are typically batch jobs, we selected only best-effort
batch jobs. We also filtered on the job’s priority and scheduling
class to extract latency-insensitive batch jobs. Since these jobs were
sometimes killed to make room for high-priority jobs, we kept only
the jobs that finished normally at least once.

The Google trace reports the average and maximum memory
usage for each 5 min interval. We use the maximum used memory
to define the usage for the period between two measurements. To
capture the behavior of the whole job, we scaled the runtime of the
memory trace to match the wallclock duration of the job.

Table 2: Maximum memory usage per node. Each figure is
the percentage of jobs. Small jobs are <32 nodes and large
jobs are >32 nodes. Synthetic figures are adapted from [41].

Max memory Synthetic Grizzly

(GB/node) All Normal Large All Normal Large
0,12) 61.0% 69.5%  53.0% 73.3% 63.5% 77.8%
[12,24) 18.6% 19.4% 16.9% 12.4% 20.2% 8.9%
[24,48) 11.5% 77% 14.8%  8.2% 8.5% 8.0%
[48,96) 6.9% 3.0% 11.2% 5.7% 7.0% 5.0%
[96,128) 2.0% 0.4% 4.2% 0.5% 0.8% 0.3%

3.3 Trace characterization

3.3.1 Synthetic traces. Table 3 presents the characteristics of the
normal memory and large memory jobs. The memory demand of
normal jobs is less than the capacity of a normal node (see Sec-
tion 3.4 for node definition), whereas all large jobs demand more
memory than a normal node capacity. The generated input job
traces for the simulator are sampled without replacement, in the
appropriate proportions, from these two distributions. The distribu-
tion for maximum, average usage, and requested memory broken
down by job size is presented in Figure 4. In our traces, the average
usage is much lower than the maximum usage, which opens up
room for improvements during resource allocation. On the other
hand, the maximum usage and requested memory have similar
distributions. This shows that we take a conservative approach in
our study.
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g 2 [24,48) 1.68% 1.09% 1.12% 0.56% 0.34% 0.41% 1.44% 0.47%
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(a) Average memory usage from usage trace profile.
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requested memory with 0% overestimation).

Figure 4: Trace memory heatmap distribution versus job size
for the synthetic trace.



Table 3: Normal and large memory job characteristics.

Normal memory jobs

Metric  Memory (MB) Node-hours Memory (MB) Node-hours

Large memory jobs

Min 0 0 65538 0
1st Qu. 4037 132 76176 256
Median 8089 2717 86961 6720
3rd Qu. 15341 29264 99956 77028
Max 65532 23082880 130046 23329920

3.3.2  Grizzly trace. Table 2 presents the distribution of the peak
memory demand for the Grizzly dataset. Although the system CPU
utilization is reported to be 78% [28], it is clear from its distribution
that memory-wise the system is underutilized and provisioned to
run the worst cases. The majority of jobs use less than 24 GB per
node. According to Panwar et al. [28], average node level memory
utilization is 18% of its capacity and there is a large gap between the
node’s worst-case memory usage and its common case utilization.

3.4 Simulated system configuration

The simulated systems are given in Table 4. For both datasets, we
separated the systems into normal nodes, which have the typical
memory capacity, and large nodes, which have double the mem-
ory capacity of the normal nodes. We similarly define a job to
be large if it requires a large capacity node to run with the base-
line policy. A job is normal if it can execute on a normal capacity
node. Individually the systems have either 128 GB (as in Grizzly [4]
and Archer [41] supercomputers) or 64 GB large nodes. We further
divided each simulated scenario to correspond to a system with
different ratios between large and normal nodes, varying from all
normal nodes (0%) to all large nodes (100%).

Table 4: Simulated system configurations.

Parameter Synthetic trace  Grizzly trace
System size 1024 nodes 1490 nodes
Number of cores per node 32 cores

Memory per node (GB) 32, 64, 128
Allocation policy Baseline, Disaggregated
Scheduling policy Backfill

Queue and Backfill size 100

Backfill and Scheduling interval 30s

0, 15, 25, 50, 75, 100
Cost per node (excl. memory) $10,1547 [27]
Cost per 128 GB $1280 [27]

T Cost per node includes node, network, switches, and small storage.

% Large nodes

All allocation policies have exclusive access to all CPUs of a
node, which implies that the Baseline allocation also considers
exclusive access to the memory as well. In our experiments we
do not consider a swap system as in our experience, HPC systems
typically do not have swap enabled.

The cost-benefit analysis in Section 4.3 uses the estimated com-
ponent costs given in Table 4, which were taken from a recent
analysis of a small-scale HPC cloud platform [27]. The interconnect
is a torus, sized as recommended by prior work [35, 36].

3.5 Allocation Policies

We will present the results for the following memory allocation

policies:

e Baseline: no disaggregated memory (each job has exclusive ac-
cess to all resources on the node).

e Static: disaggregated memory with fixed memory allocation
specified in the job submission (Zacarias et al. [45]).

e Dynamic: disaggregated memory with dynamic memory alloca-
tion policy (Section 2).

4 RESULTS

4.1 System throughput (jobs per second)

Each plot in Figure 5 shows the normalized throughput, in jobs per
second, on the y-axis, as a function of the system’s total amount of
provisioned memory, on the x-axis. The throughput is normalized
by dividing the throughput by that of the baseline approach (no
disaggregation) on a system with 100% memory (rightmost point
on the x-axis). The total system memory capacity is normalized by
dividing it by the total memory capacity of a 100% large node system.
The panels in the top row correspond to +0% overestimation, i.e.,
the users specify the exact peak memory footprint, for every job,
at job submission time. The panels in the bottom row correspond
to a more realistic 60% overestimation. The columns show different
proportions of large jobs for the synthetic trace, together with the
Grizzly trace at the right-hand side.

If the demand for memory consumption is low, e.g. in the top-left
panel corresponding to +0% overestimation (top) and 0% large jobs
(left), there is little difference between the performance of the three
policies. Since normal jobs require up to 64 GB per node, the base-
line policy achieves full performance with 50% of the full system
memory capacity, i.e., all normal capacity nodes. It is not possible
to reduce the memory provisioning further for the baseline policy
(hence the missing bars below 50%). By sharing memory capacity,
the static and dynamic disaggregated memory policies are both
able to share and maintain full performance with a lower memory
provisioning of 37%.

As the proportion of large jobs increases, along the top row,
memory has an increasing effect on system throughput, and the
difference between the three policies increases. We see a large
difference between the baseline and static approaches, and up to
8% difference between the static and dynamic approaches. By re-
claiming most of the unused memory from the jobs, so that each
job’s average memory provisioning matches its average (not peak)
memory demands, more jobs are able to run concurrently.

In the bottom row of Figure 5, the peak memory footprint is
overestimated by a more realistic +60%. In this case, some of the
jobs cannot be executed by the baseline policy, so results are only
shown for the two disaggregated memory policies. We also see a
significant difference between the static and dynamic approaches.
For example, with 75% large jobs and a system with 50% total mem-
ory, the dynamic approach achieves throughput over 95%, which
is 13% above that of the static approach. In summary, the largest
benefit from the dynamic approach is seen for underprovisioned
systems with a high number of large jobs and also for scenarios in
which the users overestimate their memory demands.
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Figure 5: Normalized throughput (y-axis) for each memory configuration (x-axis) for various job mixes. Bold x-axis labels
identify overprovisioned memory systems. Missing bars in the plots indicate there are not enough large memory nodes to run
all jobs. The largest benefit from the dynamic approach is seen for underprovisioned systems with high numbers of large jobs.

4.2 Job response time

Figure 6 shows the empirical cumulative distribution function (ECDF)
of the job response times (waiting time plus runtime). The x-axis
is the response time on a logarithmic scale and the y-axis is the
cumulative empirical probability, from 0 to 1. We divide the results
into three scenarios: overprovisioned (when the job mix demands
fewer large nodes than is available), matching (job mix demands an
equal number of large nodes), and underprovisioned (job mix de-
mands more large nodes than is available). For +0% overestimation
(top row), all three scenarios show little difference in performance
between the static and dynamic disaggregated memory approaches,
with a maximum difference in quantile response time of 5%. For
+60% overestimation (bottom row), the matching and underpro-
visioned systems show a reduced response time for the dynamic
approach, as jobs are able to be scheduled more quickly, leading to
a shorter waiting time in the queue. For underprovisioned systems,
the median response time (y-axis equals 0.5), with overestimation, is
reduced by 69%. This is because the dynamic approach releases un-
used resources and allows jobs to start earlier, therefore decreasing
the job response times.

4.3 Cost-benefit analysis

Figure 7 shows the results of the cost-benefit analysis, assuming the
component costs given in Table 4. The y-axis is the throughput (jobs
per second) per dollar and the x-axis is the percentage of large jobs.
As before, the top row is for +0% overestimation and the bottom
row is for +60% overestimation. Different system configurations
are shown in different panels from left to right. The conservative
approach is a system with 100% memory provisioning (128 GB per
node), shown in the left-hand panels.

Depending on the expected memory demands of the jobs during
the production, the operator must choose a memory provisioning,
which corresponds to choosing one of the panels from left to right.
If it is expected that most jobs will have small memory demands,
then the demand will be for 0% large jobs, which is the leftmost
point on the x-axis of each panel. Choosing the 25% memory (top-
right panel), rather than the 100% memory (top-left panel) improves
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Figure 6: Empirical cumulative distribution of response time
for different systems and job mixes. For +60% overestimation
and underprovisioned systems (bottom right), the dynamic
approach has a 69% lower median response time (note:
logarithmic x-axis).
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Figure 7: Cost-benefit analysis: throughput per cost (y-axis)
as a function of the job mix (x-axis). The dynamic approach
has a gentler drop in throughput when memory demand is
high, reducing the risk of memory underprovisioning,.
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Figure 8: Effect of memory overestimation on throughput. Each panel is a different overestimation factor, showing throughput
(y-axis) vs. total system memory (x-axis). Missing bars in the plots indicate there are not enough large memory nodes to run all
the jobs. Compared with the static approach, the dynamic approach is less affected by memory overestimation.

throughput-per-dollar by 8%, which is seen by comparing the left-
most datapoint in the two panels. But the underprovisioned system
is sensitive to the job mix, because during periods with high pro-
portions of large memory jobs, the throughput drops dramatically,
which is seen by the slope of the curve. The cost-benefit calcula-
tions for the static and dynamic approaches are similar, but the
dynamic approach consistently achieves slightly better throughput
by up to 8%.

With a realistic +60% overestimation in job memory demands,
seen in the lower row of panels, the static approach has a much
steeper fall off in throughput due to large memory jobs, while the
dynamic approach has behavior that is roughly the same as in the
top row. The gentler fall off for the dynamic approach reduces the
risk of provisioning a system with less memory and it improves the
throughput per dollar by up to 38%.

4.4 System throughput vs. overestimation

Figure 8 shows the throughput (y-axis) as a function of the system
memory capacity (x-axis). Running from left to right, each panel
shows a different amount of overestimation, from +0% to +100%.
The top row is for the synthetic trace with 50% large jobs and the
bottom row is for the Grizzly trace. We observe that for the baseline
case (+0% overestimation), the static and dynamic approaches have
similar performance, with the difference appearing when the sys-
tem is underprovisioned. However, the difference shows up when
the jobs start to overestimate their demands. It becomes more com-
pelling when the systems are underprovisioned to run the job mix
(on x-axis systems below 75% total memory). The dynamic approach
experiences slowly the effects of overestimation compared to the
static approach. We can clearly see that having a mechanism to
release unused memory is beneficial to the system with fewer re-
sources as it is able to run more jobs concurrently. For the worst case
(+100% overestimation) the difference between static and dynamic
approaches is over 38% on a system with 37% of its total memory. In
this scenario, the dynamic is even able to keep the throughput over

80%. The dynamic approach is able to run higher load demands on
less resources, therefore reducing the investment in resources.

4.5 Minimizing memory for defined throughput

Figure 9 shows the amount of memory resource necessary to keep
the system throughput at a desired threshold (95% of the baseline
throughput). We see that the static approach needs more resources
to meet the threshold as we increase the amount of memory over-
estimation. On the other hand, the dynamic approach can reach
95% of the throughput using further underprovisioned systems
even doubling the memory demands. In the best case, the dynamic
achieves the threshold, saving almost 40% more memory than the
static approach. The dynamic approach is able to maintain close
to maximum throughput with much fewer resources even in the
presence of overestimation.

100 -

874

751
62
57
50
431
37
o\o
’\

Memory Overestimation

Total system memory (%)

. Static disaggregated memory Dynamic disaggregated memory

Figure 9: System resource provisioning (y-axis) as a function
of the memory demand overestimation (x-axis) to achieve
95% of the fully provisioned throughput. Results are shown
for synthetic trace with 50% large jobs.



5 RELATED WORK

Memory disaggregation systems. Peng ef al. [30] implement
a user-space remote paging library for disaggregated memory to
handle nodes with fast, small local memories and large, slow remote
memories. The library evicts local pages and retrieves remote pages
when local memory is full. The UNIMEM [20] approach was devel-
oped by the EUROSERVER [14], ExaNoDe [33] and EuroEXA [15]
projects. It implements a global physical address space for Arm

architecture accessible by load—store instructions and RDMA.

Resource allocation/usage. Amaro et al. [9] increase through-
put via a swapping mechanism using remote memory over RDMA.
Their remote memory-aware scheduler splits each job’s memory de-
mand between local and remote memory. Amaral et al. 8] develop
a controller to manage disaggregated resources and an algorithm to
optimally place workloads in virtualized data-centers. Li et al. [23]
propose a system software layer that exposes a CXL memory pool as
a zero-core virtual NUMA node. Simulations show that the memory
capacity of a cloud system can be reduced up to 10%. Michelogian-
nakis et al. [25] quantifies the appropriate level of disaggregation for
HPC workloads. They demonstrate that resource reduction would

satisfy the worst-case average rack utilization.

Dynamic resource assignment. Pinto et al. [31] present Thymes-
isFlow, a software-defined disaggregated memory prototype that
uses a compute node that accesses remote memory and a memory
node that exposes part of its local memory as disaggregated mem-
ory. Koutsovasilis et al. [22] memory policy migrates memory pages
between local and disaggregated memory to increase performance
compared with swap. They also introduce a memory orchestration
stack that monitors the state of each node and scales its allocation
of disaggregated memory according to the node’s memory use. We
differ from [22, 31] as we deal with a large-scale HPC system and
adapt the job to the system through a resource manager capable
of modifying the allocated memory. D’Amico et al. [12] present a
dynamic job scheduling policy integrated into the Slurm resource
manager. They implement a variant of backfill to leverage min-
imizing the system slowdown and co-scheduling malleable jobs.
Iserte et al. [17] provides an approach to dynamically reconfigure
the jobs’ size by enhancing the collaboration between the OmpSs
runtime and Slurm resource manager. We also differ from [12, 17]

as we dynamically reassign memory but not compute resources.

6 CONCLUSION

Disaggregated memory breaks the rigid boundaries between nodes
to provide memory as a system-wide pooled resource. State-of-
the-art resource management systems for disaggregated memory
statically allocate memory to each job, according to the memory re-
quirement specified at job submission time. This paper makes a case
for a dynamic approach, which adapts to the actual memory usage,
improving throughput and waiting time, and increasing throughput
per dollar by up to 38%. It reduces the need for the user to provide
an accurate bound on the memory footprint. Our experiments are
based on publicly available traces, and our implementation and
methodology are available as open source [6, 44] in the hope that

others reproduce and build upon our work.
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