
Dynamic Memory Provisioning on
Disaggregated HPC Systems

Felippe Vieira Zacarias
Universitat Politècnica de Catalunya
Barcelona Supercomputing Center

Barcelona, Spain
fvieira@bsc.es

Paul Carpenter
Barcelona Supercomputing Center

Barcelona, Spain
paul.carpenter@bsc.es

Vinicius Petrucci
Micron Technology
Austin, United States

vtavarespetr@micron.com

ABSTRACT
Disaggregated memory is under investigation as a way to break the
rigid boundaries between node memory hierarchies in order to pro-
vide memory as a system-wide pooled resource. The resource man-
ager allocates the system’s disaggregated memory to jobs, based
on the memory requirements defined by the user at job submission
time. It is hard for the user to know the job’s precise peak memory
footprint, and prior work has shown that users have an incentive
to overestimate their needs. This overestimation leads to a signif-
icant overallocation of memory, and the majority of the physical
memory in the system is wasted. This paper presents a way to
reclaim much of this overallocated memory. We extend the Slurm
job scheduler to dynamically reallocate memory, according to the
job’s current memory footprint. We enhance an existing Slurm
simulator to model this situation and combine publicly available
traces to model an HPC system on up to 1490 nodes. Our results
show that the dynamic memory provisioning approach increases
the throughput per dollar by up to 38%, compared to a system with
static allocation of disaggregated memory.

KEYWORDS
Disaggregation, Throughput, Response time, Resource scheduling,
Resource provisioning, Slurm

ACM Reference Format:
Felippe Vieira Zacarias, Paul Carpenter, and Vinicius Petrucci. 2023. Dy-
namic Memory Provisioning on Disaggregated HPC Systems. In Workshops
of The International Conference on High Performance Computing, Network,
Storage, and Analysis (SC-W 2023), November 12–17, 2023, Denver, CO, USA.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3624062.3624174

1 INTRODUCTION
High-Performance Computing (HPC) applications have widely
varying per-node memory footprints due to diverse application
characteristics, differing problem sizes, and strong scaling [21, 26,
49]. In a typical HPC cluster architecture, memory is tightly coupled
to the CPUs running the jobs, leading to stranded memory capacity
and an inefficient use of the memory resources. In fact, 25% to 76%

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SC-W 2023, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0785-8/23/11. . . $15.00
https://doi.org/10.1145/3624062.3624174

of the total memory capacity typically remains idle [18, 23, 28, 30].
Disaggregated memory offers a way to improve memory utiliza-
tion, as memory becomes a pool that can be dynamically composed
to match the needs of the workloads [22]. It enables fine-grained
allocation of memory capacity to jobs [16, 21, 24, 30, 37, 48], while
maintaining the cost-effectiveness and scalability of a cluster archi-
tecture [18].

HPC job schedulers generally allocate resources statically [29], so
disaggregated memory resource management systems require the
user to specify the peak memory demands at submission time [29,
30, 45]. It is difficult for users to know the precisemaximummemory
footprint, and they have an incentive to overestimate this figure to
avoid an out-of-memory error, which would terminate the job [21,
34, 38, 39]. A recent paper investigated the incentive for users of
a disaggregated memory system to provide accurate memory esti-
mates. They showed a tragedy of the commons effect: for example, a
single user overestimating their memory demands by 60% increases
their response time (from submission to completion) by just 8%, but
the combined result of everybody doing the samewould be a 5 times
increase in response time and 25% reduction in throughput [46].

This paper makes a case for dynamic reallocation of disaggre-
gated memory. While we see a small benefit from the difference
between the job’s peak and average memory consumption, there is
a large benefit from the difference between the job’s peak memory
consumption and the memory demand that the user would specify
in the job submission. We propose a strategy for dynamic memory
allocation that reclaims overallocated memory and we evaluate
the policy using the Slurm simulator [1]. The simulation approach
allows work to proceed before the availability of a large-scale HPC
systemwith disaggregated memory and complete software stack, as
well as enabling rapid at-scale evaluation of multiple scenarios with-
out occupying a real system. We find that even assuming a conser-
vative approach where the users correctly estimate their maximum
memory usage, system performance increases by up to 8%. When
memory demands are overestimated by 60%, the improvement in
performance for an underprovisioned system is up to 13%.Moreover,
employing the dynamic approach results in equivalent performance
to the baseline while using fewer resources, specifically 40% less
memory provisioning for comparable throughput, within 5%.

Dynamic resource assignment has been explored in the context
of malleability [12, 17]. Unlike approaches for malleability, our ap-
proach does not need any modifications to the application. Other
studies investigate disaggregated memory but are done at a rela-
tively small scale [22, 31]. In contrast, our simulation approach has
allowed the evaluation to be performed on up to 1490 nodes. To the
best of our knowledge, no prior studies have tackled the specific

1

https://doi.org/10.1145/3624062.3624174
https://doi.org/10.1145/3624062.3624174

problem of cluster-level dynamic job scheduling on large-scale dis-
aggregated memory systems. A more extensive comparison with
related work is in Section 5.

In summary, we make the following contributions:

(1) We extend Slurm's memory allocation policy and the Slurm sim-
ulator to support disaggregated memory with dynamic memory
reallocation.

(2) We present a methodology to create complete HPC job traces
with dynamic memory footprints from publicly available datasets.

(3) We evaluate a set of simulated scenarios using synthetic and
real-world traces and investigate how the job memory allocation
a�ects overall system throughput, response time, utilization,
and cost�bene�t in HPC systems.

(4) We demonstrate that dynamic memory assignment delivers
improvements up to 13% in throughput, 38% in throughput-per-
dollar, and up to 69% reduction in median job response time,
compared to a static policy, when there are imbalanced mem-
ory usage and overestimated demands on underprovisioned
systems.

Please note that our dynamic memory allocation scheme and job
trace generation methodology are accessible as open source [6, 44].
We encourage others to not only replicate our work but also to
contribute to its further enhancement.

2 DISAGGREGATED MEMORY MANAGEMENT
2.1 Simulation infrastructure for disaggregated

memory
Slurm [43] is an open-source, scalable resource management system
widely used in HPC. Jobs are scheduled by Slurm to nodes that can
satisfy the requested core and memory resources [18]. Allocation of
nodes is by default exclusive, meaning that unused resources can-
not be assigned to another job, given the possible negative impact
of inter-workload interference [28, 30].

We leverage the Slurm simulator [1, 19], which provides a scal-
able environment to develop and evaluate HPC job scheduling
policies. It takes as input a job trace based on the Standard Work-
load Format (SWF) [2,10]. Slurm simulator employs most of Slurm's
original source code, enabling an accurate evaluation that captures
all parameters and behavior that occur in a real environment.

Zacariaset al.[45] extend Slurm to allocate disaggregated mem-
ory using a static policy. Their policy tries to run the job on nodes
with enough free memory. If this is not possible, then it will choose
nodes with the most free memory and borrow the remaining mem-
ory from other nodes. A node that has already lent memory can still
run new jobs, as long as it has lent in total no more than half of its
total memory capacity. At that point, the node temporarily becomes
a memory node that can lend memory but not run new jobs. All
memory allocation is done based on the memory request in the job
submission. Any job that exceeds its memory request is killed.

The policy of Zacariaset al.quanti�es the performance slow-
down due to remote memory access latency and bandwidth con-
tention using a contention model [45, 47]. Each application is char-
acterized by a sensitivity curve, relating memory bandwidth con-
tention to performance as well as a contentiousness �gure, which
measures the memory bandwidth at full performance. The model

uses remote memory bandwidth since remote accesses do not create
cache contention in their disaggregated memory system. Applica-
tion pro�ling is only needed for the simulation-based evaluation
methodology, and it is not an input to the resource management
policy that would be used in production.

2.2 Dynamic memory allocation policy
We enhanced Slurm simulator, extended for disaggregated memory
by Zacariaset al.[45], to support dynamic memory allocation. This
allowed us to develop and evaluate the dynamic memory allocation
policy without requiring a large-scale dedicated HPC system with
disaggregated memory (which is impractical as the technology is
still in its infancy). Slurm uses a con�gurable architecture with an
extensive set of plugins and a centralized manager (or controller),
Slurmctld, which allocates resources to jobs, monitors job execution,
and mediates contention to resources through a queue of pending
jobs. Each compute node executes an instance of theSlurmddae-
mon, which communicates with the controller to receive work and
manage job execution on the node.

Figure 1a depicts our memory allocation scheme in the context of
the Slurm resource manager. The scheme is divided into theMonitor,
Decider, Actuator, andExecutormodules, and it works as follows.
The initial allocation of a job is done in the same way as Zacariaset
al., based on the memory request in the job's submission script. But
once the job begins, its actual memory consumption is monitored
over time, by theMonitor module in Slurmd, which runs on every
node. The memory usage information is collected by the system for
all running jobs. Prior work [7, 42] has already demonstrated low
overhead for data collection to track job executions, with sampling
intervals on the order of seconds. The updating interval is a critical
parameter, as overly frequent adjustments incur additional memory
management overheads whereas infrequent adjustments fail to
accurately capture the actual memory usage. In our work, we update
the memory usage on average every 5 minutes, which is the same
as that used in [42]. The usage information is passed to the Slurm
controller, which updates the job memory allocations.

When Slurm receives the updated current memory consumption
for a particular node in a job, it will make a decision based on the
current allocation (Decidermodule). Next, the memory will be up-
dated by theActuatormodule. If the current memory usage on the
node is lower than the current allocation, the resource manager will
deallocate memory. It will deallocate remote memory before deallo-
cating local memory. On the other hand, if the new usage is higher
than the current allocation, the resource manager will allocate mem-
ory locally, if possible, and then remotely if necessary. The idea is
to maximize the local-to-remote ratio, thus decreasing the impact
of remote memory accesses. Finally, the controller will update the
job's access to physical memory on the node using theExecutor
module, which runs on each node. This module will reset memory
capacity constraints available to the job locally and remotely.

We assume the system has a proper allocation management that
will prioritize local memory rather than remote memory. Therefore,
it should have an e�cient mechanism for moving the accessed data
to the local memory, while unused data will be in the remote region.
An important management question is what to do when the system
runs out of memory. Dynamic memory allocation intentionally

2

(a) Dynamic disaggregated memory allocation in Slurm.

(b) Evaluation of dynamic disaggregated memory using Slurm
simulator.

Figure 1: Proposed dynamic allocation of disaggregated mem-
ory and its integration into Slurm and Slurm simulator.

allows the peak memory demands of the running jobs to exceed the
system's total physical memory. When a job increases its memory
usage, the system may not have enough free memory to satisfy its
needs. An invalid approach would be to block the job until memory
becomes available, but this would clearly risk deadlock.

Two valid approaches for dealing with jobs running out of mem-
ory are Fail/Restart (F/R) and Checkpoint/Restart (C/R). In both
approaches, theActuatorterminates the job, releases its resources,
and resubmits the job to execute later. F/R restarts the job from the
beginning whereas C/R restarts from a recent checkpoint. We may
expect C/R to perform better, but it is more complex. Most C/R li-
braries require the application to control checkpointing and restart.
Nevertheless, we found that out-of-memory errors at the system
level are rare. In fact, in the most extreme scenario,1 less than 1%
of jobs fail due to insu�cient memory. We conclude that F/R is
su�cient, and present all results using the F/R approach. Neverthe-
less, in production, the proposed dynamic memory allocation may
sometimes cause jobs to fail repeatedly, due to abnormal system

1100% large jobs, 50% system, +100% overestimation (see Section 3).

load or an application with outlier phases allocating memory. In
order to mitigate this problem, the resource manager can take sev-
eral actions to ensure fairness. One approach would be to increase
the job's priority and allocate additional resources after a speci�ed
number of failures. Alternatively, the resource manager could opt
to initiate the job without dynamic resource allocation, instead
assigning resources to the job in a static and guaranteed manner.

2.3 Dynamic memory allocation in the Slurm
simulator

Figure 1b shows our approach to evaluate the dynamic allocation
of disaggregated memory using the Slurm simulator. It is based on
the work of Zacariaset al.[45], and our modi�cations are depicted
as orange boxes. The functions that are partially implemented or
adapted to run in a simulation environment rather than a real sys-
tem are represented with dotted boxes. TheDecidermodule receives
the memory usage from the o�ine memory usage trace (details
in Section 3.2), rather than receiving the memory status from the
nodes in the cluster. This step mimics theMonitor module feeding
the current memory usage to the dynamic memory allocation pol-
icy to enforce the memory usage in case a job exceeds its memory
allocation. Our extension works by executing the following steps:
once the system has jobs running, the simulator will calculate at
which simulated time it must issue commands to update the jobs.
To calculate the expected simulation time it uses the job's progress,
which is its elapsed running time. Since multiple jobs run concur-
rently, the simulator will use the job's earliest progress to update
the timer to enforce the new usage in the system.

Once the simulation reaches a particular time, it issues com-
mands to update the jobs whose progress is within the period.
A command speci�es the node identi�cation and its new mem-
ory usage. The resource manager then receives a list with the job
and usage of each node to apply the new allocation. TheActuator
modulethen allocates or deallocates memory to match the node's
current memory usage. We consider the memory demand to be the
maximum memory usage in the time period between the current
progress and the next update, as represented in the original trace.
Next, theActuatormodule applies the contention model to update
the simulation and job duration, and the calculated job progress is
sent to theExecutormodule. Since the simulated Slurmd daemon
is a simpli�ed version that emulates job execution for all nodes in
the system, it only updates the job duration and the queue of jobs
being simulated instead of actually recon�guring memory capacity
locally and remotely.

3 METHODOLOGY
3.1 Job traces
We used three sources of job traces, which are summarized in
Table 1 and described in more detail below:

3.1.1 Grizzly trace.In 2019, Los Alamos National Lab (LANL) re-
leased an HPC memory usage trace, which details the memory
usage of three HPC clusters in the period from late 2018 through
early 2019 [5, 28]. We chose the dataset for the largest system,
Grizzly [4], a mid-range TOP 500 supercomputer with 1490 nodes,
each with128GBDRAM. The complete Grizzly dataset consists

3

Table 1: Summary of data provided by the job traces.

Trace Domain Submission
times

Memory
request

Num.
nodes

Job
duration

Memory
trace

Grizzly [5, 28] HPC � � X X X
CIRNE [11, 45] HPC X X X X �
Google [40] Cloud � � 1 X X X 2

1. Some records in the Google trace have the memory request, but most do not.
2. The Google memory trace is normalized to the largest machine (we assumed12 TB).

of 53”4GBof (uncompressed) data, which comprises over70•000
jobs and560million records. The memory usage over time is col-
lected using the Lightweight Distributed Metric Service (LDMS) [7],
which gives a snapshot, collected every ten seconds on each node,
of the current job and the free and active memory. There is no
information from the job scheduler, such as submission time, re-
quested memory, or the type of job. Since each job is identi�ed
using a unique ID, it is possible to identify parallel jobs running
on multiple nodes and therefore deduce the job's number of nodes
and duration [28]. As shown in Table 1, the Grizzly trace provides
all necessary information except job submission times, memory
requests, and the slowdown model.

3.1.2 CIRNE model.The CIRNE Comprehensive Model [11] gen-
erates a synthetic HPC job trace based on the job arrival pattern,
time limits, numbers of nodes, system loads, and time durations
observed in real environments. We use the extended model from
Zacariaset al.[45], which also characterizes the slowdown of each
job as a function of disaggregated memory accesses and contention.
As shown in Table 1, it provides all parameters required by our
methodology except for the memory trace of dynamic memory
consumption over time.

3.1.3 Google trace.In 2020, Google released detailed job traces
from eight of its Borg cells for the entire month of May 2019 [40].
Each Borg cell is a collection of machines that together operate as
a single management unit. We use only the data from cellb, which,
according to [40], has the largest proportion of batch jobs. Each
entry in the trace is either analloc set, which describes a resource
reservation, or a singlejobsubmission, which describes the compu-
tation to run and the resources it needs. Each job may run several
tasks, which inherit properties such as the priority and resource
request [40]. Jobs are classi�ed according to their priority and sched-
uling class, i.e. latency sensitivity, distinguishing user-facing service
jobs vs. non-production or batch jobs [42]. The memory usage on
each node is sampled once per second and recorded as average and
maximum values over 5-minute windows [42].

Some hardware characteristics in the Google trace have been
obfuscated for con�dentiality reasons. For instance, memory sizes
are normalized relative to the largest machine memory capacity [42].
It was reported that the maximum capacity of a system in operation
at the time was12TB [3], so we used this �gure to denormalize the
data. As shown in Table 1, after denormalizing the memory usage,
this trace provides all necessary information except job submission
times and memory requests.

3.2 Generating the job traces
None of the traces described in Section 3.1 provide all of the infor-
mation that is required for the analysis. Our approach is to generate

two sets of traces. The �rst is based on LANL's Grizzly trace, aug-
mented by the job submission times and model from the CIRNE
model. The second uses the Google trace shaped by HPC job sta-
tistics from CIRNE and Archer [41]. Both traces use the slowdown
model from Zacariaset al [45].

3.2.1 Adapting the Grizzly trace.We sampled the Grizzly dataset
(see Section 3.1.1), to obtain a smaller trace that was feasible to
simulate. Figure 2 shows all the one-week periods in the Grizzly
trace, in terms of CPU utilization (on theG-axis), maximum job
node�hours (on the~-axis of the left-hand plot) and maximum
job memory usage (on the~-axis of the right-hand plot). The CPU
utilization was calculated as the total node�hours of the jobs divided
by the total node�hours over the period. The simulated periods
are shown as blue triangles and the remaining periods are shown
as grey dots. We took a random sampling of the weeks with the
utilization of 70% or more, which is representative of HPC [28]. We
then randomly chose seven periods to simulate. Figure 2 shows
that the chosen periods are representative of the important periods
during which utilization is relatively high.

The trace of memory consumption over time is reduced in size
using the Ramer�Douglas�Peucker (RDP) algorithm [13, 32]. We
generated the submission times using the CIRNE Comprehensive
Model [11]. Although the job's actual peak memory consumption
is known, the memory demand that the user would specify in the
job submission script is unknown. We therefore provide a sweep on
the overestimation factor, from +0% (demand equals peak memory
use) to +100% (demand is double the peak memory use). The job
type is needed by the multi-node slowdown model [47] described
above. We match the job to a pro�led application by minimizing
the Euclidean distance of the size and runtime.

Figure 2: Sampling the Grizzly trace. Each point represents a
1-week period. Simulated periods, depicted as blue triangles,
are representative of weeks with CPU utilization � 70%.

3.2.2 Synthetic model plus Google trace.We generate a set of syn-
thetic input �les using the CIRNE Comprehensive Model [11] (Sec-
tion 3.1.2) jointly with the per-job memory traces from the Google
trace (Section 3.1.3). The overall process is shown in Figure 3. The
�rst four steps follow the methodology of Jokanovicet al.[19] as
extended by Zacariaset al.[45]. We �rst generate a synthetic trace
using the CIRNE Model (Step 1). We select the job from a pool
of applications that have been previously pro�led regarding size,
runtime, memory bandwidth, read/write ratio, and local/remote
access memory ratio (Step 2). We map each real application to the

4

Figure 3: Augmenting the workload trace with real application data and per-job memory usage from the Google trace. Method-
ology adapted and extended from [19, 45].

nearest pro�led job based on the Euclidean distance between their
sizes and execution times (Step 3) and �nally sort the trace by job
arrival time (Step 4).

The remaining steps in Figure 3 are new. Since the synthetic
trace does not specify the memory request, we follow the memory
request distribution of the Archer supercomputer [41] (Step 5). The
distribution is displayed in Table 2. We then map the job to a Google
job, by minimizing the the Euclidean distance of size, runtime, and
memory demand to obtain the trace of memory consumption over
time (Step 6). This trace can be long, so we use the RDP [13, 32]
algorithm to reduce the number of data points. We then �lter the
trace to obtain the target proportion of large-memory jobs (Step 7)
and generate the memory usage traces and job trace binaries needed
by the simulator (Steps 8 and 9).

The Google trace contains a large range of jobs in a cloud envi-
ronment, and it required some adaptation before it could be used.
Since HPC jobs are typically batch jobs, we selected only best�e�ort
batch jobs. We also �ltered on the job's priority and scheduling
class to extract latency-insensitive batch jobs. Since these jobs were
sometimes killed to make room for high-priority jobs, we kept only
the jobs that �nished normally at least once.

The Google trace reports the average and maximum memory
usage for each5min interval. We use the maximum used memory
to de�ne the usage for the period between two measurements. To
capture the behavior of the whole job, we scaled the runtime of the
memory trace to match the wallclock duration of the job.

Table 2: Maximum memory usage per node. Each �gure is
the percentage of jobs. Small jobs are � 32 nodes and large
jobs are ¡ 32 nodes. Synthetic �gures are adapted from [41].

Max memory Synthetic Grizzly
(GB/node) All Normal Large All Normal Large

(0,12) 61.0% 69.5% 53.0% 73.3% 63.5% 77.8%
[12,24) 18.6% 19.4% 16.9% 12.4% 20.2% 8.9%
[24,48) 11.5% 7.7% 14.8% 8.2% 8.5% 8.0%
[48,96) 6.9% 3.0% 11.2% 5.7% 7.0% 5.0%
[96,128) 2.0% 0.4% 4.2% 0.5% 0.8% 0.3%

3.3 Trace characterization
3.3.1 Synthetic traces.Table 3 presents the characteristics of the
normal memory and large memory jobs. The memory demand of
normal jobs is less than the capacity of a normal node (see Sec-
tion 3.4 for node de�nition), whereas all large jobs demand more
memory than a normal node capacity. The generated input job
traces for the simulator are sampled without replacement, in the
appropriate proportions, from these two distributions. The distribu-
tion for maximum, average usage, and requested memory broken
down by job size is presented in Figure 4. In our traces, the average
usage is much lower than the maximum usage, which opens up
room for improvements during resource allocation. On the other
hand, the maximum usage and requested memory have similar
distributions. This shows that we take a conservative approach in
our study.

(a) Average memory usage from usage trace pro�le.

(b) Maximum memory usage from usage trace pro�le (equal to
requested memory with 0% overestimation).

Figure 4: Trace memory heatmap distribution versus job size
for the synthetic trace.

5

Table 3: Normal and large memory job characteristics.

Normal memory jobs Large memory jobs

Metric Memory (MB) Node�hours Memory (MB) Node�hours

Min 0 0 65538 0
1st Qu. 4037 132 76176 256
Median 8089 2717 86961 6720
3rd Qu. 15341 29264 99956 77028
Max 65532 23082880 130046 23329920

3.3.2 Grizzly trace.Table 2 presents the distribution of the peak
memory demand for the Grizzly dataset. Although the system CPU
utilization is reported to be78%[28], it is clear from its distribution
that memory-wise the system is underutilized and provisioned to
run the worst cases. The majority of jobs use less than24GBper
node. According to Panwaret al.[28], average node level memory
utilization is 18% of its capacity and there is a large gap between the
node's worst�case memory usage and its common case utilization.

3.4 Simulated system con�guration
The simulated systems are given in Table 4. For both datasets, we
separated the systems intonormalnodes, which have the typical
memory capacity, andlargenodes, which have double the mem-
ory capacity of thenormal nodes. We similarly de�ne a job to
belargeif it requires a large capacity node to run with the base-
line policy. A job isnormalif it can execute on a normal capacity
node. Individually the systems have either128GB(as in Grizzly [4]
and Archer [41] supercomputers) or64GBlarge nodes. We further
divided each simulated scenario to correspond to a system with
di�erent ratios between large and normal nodes, varying from all
normal nodes (0%) to all large nodes (100%).

Table 4: Simulated system con�gurations.

Parameter Synthetic trace Grizzly trace

System size 1024 nodes 1490 nodes
Number of cores per node 32 cores
Memory per node (GB) 32, 64, 128
Allocation policy Baseline, Disaggregated
Scheduling policy Back�ll
Queue and Back�ll size 100
Back�ll and Scheduling interval 30 s
% Large nodes 0, 15, 25, 50, 75, 100
Cost per node (excl. memory) $10,154y [27]
Cost per 128 GB $1280 [27]

y Cost per node includes node, network, switches, and small storage.

All allocation policies have exclusive access to all CPUs of a
node, which implies that the Baseline allocation also considers
exclusive access to the memory as well. In our experiments we
do not consider a swap system as in our experience, HPC systems
typically do not have swap enabled.

The cost�bene�t analysis in Section 4.3 uses the estimated com-
ponent costs given in Table 4, which were taken from a recent
analysis of a small-scale HPC cloud platform [27]. The interconnect
is a torus, sized as recommended by prior work [35, 36].

3.5 Allocation Policies
We will present the results for the following memory allocation
policies:

� Baseline: no disaggregated memory (each job has exclusive ac-
cess to all resources on the node).

� Static: disaggregated memory with �xed memory allocation
speci�ed in the job submission (Zacariaset al.[45]).

� Dynamic : disaggregated memory with dynamic memory alloca-
tion policy (Section 2).

4 RESULTS
4.1 System throughput (jobs per second)
Each plot in Figure 5 shows the normalized throughput, in jobs per
second, on the~-axis, as a function of the system's total amount of
provisioned memory, on theG-axis. The throughput is normalized
by dividing the throughput by that of the baseline approach (no
disaggregation) on a system with 100% memory (rightmost point
on theG-axis). The total system memory capacity is normalized by
dividing it by the total memory capacity of a 100% large node system.
The panels in the top row correspond to +0% overestimation, i.e.,
the users specify the exact peak memory footprint, for every job,
at job submission time. The panels in the bottom row correspond
to a more realistic 60% overestimation. The columns show di�erent
proportions of large jobs for the synthetic trace, together with the
Grizzly trace at the right-hand side.

If the demand for memory consumption is low, e.g. in the top-left
panel corresponding to +0% overestimation (top) and 0% large jobs
(left), there is little di�erence between the performance of the three
policies. Since normal jobs require up to 64 GB per node, the base-
line policy achieves full performance with 50% of the full system
memory capacity, i.e., all normal capacity nodes. It is not possible
to reduce the memory provisioning further for the baseline policy
(hence the missing bars below 50%). By sharing memory capacity,
the static and dynamic disaggregated memory policies are both
able to share and maintain full performance with a lower memory
provisioning of 37%.

As the proportion of large jobs increases, along the top row,
memory has an increasing e�ect on system throughput, and the
di�erence between the three policies increases. We see a large
di�erence between the baseline and static approaches, and up to
8% di�erence between the static and dynamic approaches. By re-
claiming most of the unused memory from the jobs, so that each
job's average memory provisioning matches its average (not peak)
memory demands, more jobs are able to run concurrently.

In the bottom row of Figure 5, the peak memory footprint is
overestimated by a more realistic +60%. In this case, some of the
jobs cannot be executed by the baseline policy, so results are only
shown for the two disaggregated memory policies. We also see a
signi�cant di�erence between the static and dynamic approaches.
For example, with 75% large jobs and a system with 50% total mem-
ory, the dynamic approach achieves throughput over 95%, which
is 13% above that of the static approach. In summary, the largest
bene�t from the dynamic approach is seen for underprovisioned
systems with a high number of large jobs and also for scenarios in
which the users overestimate their memory demands.

6

	Abstract
	1 Introduction
	2 Disaggregated Memory Management
	2.1 Simulation infrastructure for disaggregated memory
	2.2 Dynamic memory allocation policy
	2.3 Dynamic memory allocation in the Slurm simulator

	3 Methodology
	3.1 Job traces
	3.2 Generating the job traces
	3.3 Trace characterization
	3.4 Simulated system configuration
	3.5 Allocation Policies

	4 Results
	4.1 System throughput (jobs per second)
	4.2 Job response time
	4.3 Cost–benefit analysis
	4.4 System throughput vs. overestimation
	4.5 Minimizing memory for defined throughput

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

