
Job Scheduling for Disaggregated
Memory in High Performance

Computing Systems

Felippe Vieira Zacarias

Department of Computer Architecture
Universitat Politècnica de Catalunya

This dissertation is submitted for the degree of
Doctor of Philosophy

Barcelona, July 2023

This page is intentionally left blank.

Job Scheduling for Disaggregated Memory in
High Performance Computing Systems

by
Felippe Vieira Zacarias

A Dissertation
Presented to the Department of Computer Architecture

at
Universitat Politècnica de Catalunya

in Candidacy for the Degree of
Doctor of Philosophy.

Thesis Advisors:

Paul Carpenter
Barcelona Supercomputing Center, Spain

Vinícius Petrucci
Micron Technology, USA

Xavier Martorell Bofill, Prof.
Universitat Politècnica de Catalunya, Spain

Barcelona, July 2023

This page is intentionally left blank.

Job Scheduling for Disaggregated Memory in
High Performance Computing Systems

©2023 Felippe Vieira Zacarias
Creative Commons Attribution

This page is intentionally left blank.

Abstract

In a typical High Performance Computing (HPC) cluster system, a node is the
elemental component unit of this architecture. Memory and compute resources are

tightly coupled in each node and the rigid boundaries between nodes limits compute
and memory resource utilization. The problem is increased by the fact that HPC
applications have a widely varying per-node memory footprint due to diverse application
characteristics, differing problem sizes, and strong scaling. In fact, 25% to 76% of
the system’s total memory capacity typically remains idle. Disaggregated memory
offers a way to improve memory utilization, as memory becomes a pool that can be
dynamically composed to match the needs of the workloads. It enables fine-grained
allocation of memory capacity to jobs while maintaining the cost-effectiveness and
scalability of a cluster architecture.

A key component for the distribution of computing power within the cluster
infrastructure is the Resource and Job Management System (RJMS) or simply resource
manager. Its goal is to satisfy users’ demands and achieve acceptable performance
in the overall system utilization by efficiently matching requests to resources. Even
though several researches on RJMS have been carried out to solve problems related to
the current state–of–the–art on HPC systems, memory disaggregation is still under
development. Therefore, adopting a disaggregated architecture means redesigning the
resource manager services. In this thesis we propose an efficient memory disaggregated
infrastructure for a cluster resource manager and its evaluation at scale through a
structured simulated experimental methodology employing a contention model that
models the impact of shared resources in disaggregated scenarios.

Sharing common memory devices or interfaces in a disaggregated infrastructure
may incur an unsatisfactory loss of performance because concurrent memory access
can saturate the resource; we start our study by introducing a systematic methodology
to build a contention model. Extensive real-machine experimentation and the results
of workloads have shown that our contention model predicts performance degradation
with at most an average error of 1.19 % and max error of 14.6 %. Compared with the

viii

state–of–the–art, the relative improvements are almost 24 % on average and 33 % for
the worst case.

In sequence, we argue that it is possible to increase throughput and utilization
using memory disaggregated in a resource manager. We show that depending on the
level of imbalance between the system and memory demands of scheduled jobs, memory
disaggregation enables resource savings of up to 33% compared to the state–of–the–art
resource manager. In addition, on average, it can increase the memory utilization by a
factor of 1.6, while having almost 90% of Central Processing Unit (CPU) utilization.

In our study, we also investigate how critical memory demand bounds are for
maximising system throughput and minimising job response time. We analyse to what
degree the users would have a natural incentive to provide accurate memory bounds.
We demonstrate that even when there is a large effect on system throughput (-25%)
and response time (5 times higher), there is a very little direct incentive for the users to
be accurate in their estimates, with only an 8% increase in response time. We further
demonstrate that taking advantage of memory temporal and spatial imbalance among
jobs delivers improvements up to 18% in throughput, 38% in throughput per dollar,
and up to 69% reduction in job response time (median) when there are imbalanced
memory usage and overestimated demands on underprovisioned systems.

Overall, we believe our study provides valuable insights on the importance of design
space exploration for disaggregated memory HPC systems. We demonstrate that by
understanding disruptive architectural changes on future systems and the demands
of the workloads, system provisioning can be carefully designed to achieve the best
cost–benefit.

Contents

List of Figures xiii

List of Tables xvi

Acknowledgement xviii

Acronyms xx

I Prologue 1

1 Introduction 2
1.1 Challenges and Contributions . 4
1.2 Outline of Thesis . 7
1.3 Publication List . 9
1.4 Artifact List . 10

2 Background 11
2.1 Resource and Job Management System 11

2.1.1 Slurm Resource Manager . 13
2.1.2 Slurm Simulator . 15

2.2 Disaggregated Memory . 17
2.3 Workload and Job Traces . 19

2.3.1 Standard Workload Format . 20
2.3.2 CIRNE Model . 20
2.3.3 Google Trace . 21
2.3.4 Grizzly Trace . 22

3 Related Work 23
3.1 Performance Prediction Modelling . 23
3.2 Disaggregated Solutions . 26
3.3 Dynamic Memory Provisioning . 31
3.4 Summary of Disaggregated Related Works 33

Contents x

II Modelling Contention-Aware Performance Prediction
Technique 36

4 Slowdown Based Method 37
4.1 Environment Setup . 38
4.2 Problem Definition: Global Memory Emulation 38
4.3 Slowdown Method . 40

4.3.1 Single Node Approach . 41
4.3.2 Multi Node Approach . 46
4.3.3 Key Differences Compared with State-of-the-art and Sources of

Error or Simplification . 49
4.4 Experimental Evaluation Single Node 51

4.4.1 Performance Counters . 51
4.4.2 Application Characteristics . 52
4.4.3 Sensitivity Curves . 53
4.4.4 Prediction Error . 55
4.4.5 Comparison with Memgen . 59

4.5 Experimental Evaluation Multi Node 61
4.6 Conclusion . 63

III Allocation and Scheduling in Disaggregated Memory
Systems 65

5 Infrastructure and Experimental Methodology 66
5.1 Simulated System Configurations . 67
5.2 Workload Methodology . 68

5.2.1 Synthetic CIRNE Model . 69
5.2.2 Synthetic Model plus Google Trace 71
5.2.3 Adapting Grizzly Trace . 74

6 Extending Slurm Simulator for Disaggregated Memory 78
6.1 Resource Allocation for Disaggregated Memory Systems 80

6.1.1 Job submission interface . 80
6.1.2 Supporting Memory Disaggregation 81
6.1.3 Disaggregated Allocation Policy 84

6.2 Contention Model and Disaggregated Integration into Slurm Simulator 86
6.3 Evaluation . 88

6.3.1 System Throughput . 88
6.3.2 System Response Time . 90
6.3.3 CPU and Memory System Utilization 92
6.3.4 Varying Local Memory Threshold 93
6.3.5 Different Memory Allocation Designs 93
6.3.6 Scheduling Overhead . 95

Contents xi

6.3.7 Constraining Memory Allocation 95
6.4 Conclusion . 97

7 Memory Demands in Disaggregated HPC Systems 99
7.1 Extending the Simulator with Memory Overestimation 100

7.1.1 Determining the Effect on System Throughput 101
7.1.2 Correlating Memory Overestimation and Response Time 101

7.2 Results . 103
7.2.1 System Job Throughput . 103
7.2.2 System Job Response Time . 104
7.2.3 User Job Response Time . 104

7.3 Conclusion . 106

8 Dynamic Memory Provisioning on Disaggregated HPC Systems 107
8.1 Dynamic Memory Allocation Policy . 109
8.2 Dynamic Memory Allocation in the BSC Slurm Simulator 111
8.3 Allocation Policies . 112
8.4 Results . 113

8.4.1 System Throughput (Jobs per Second) 113
8.4.2 Job Response Time . 115
8.4.3 Cost–Benefit Analysis . 116
8.4.4 Minimizing Memory to Achieve Defined Throughput 118
8.4.5 System Utilization of Memory and CPU 118
8.4.6 Effect of Overestimation on Individual Job Response Time . . . 119
8.4.7 System Throughput vs. Overestimation 120
8.4.8 Initial Memory Provisioning . 123
8.4.9 Sharing of Memory Capacity in the System 125

8.5 Conclusion . 126

IV Epilogue 127

9 Conclusion 128
9.1 Future Work . 129

Appendix A Sensitivity Curves 132

V Bibliography 137

References 138

This page is intentionally left blank.

List of Figures

1.1 Resource utilization when system matches and mismatches job’s demands. 5

2.1 Resource and job management system architecture. 12
2.2 Slurm’s resource manager architecture. 13
2.3 Simplified sequence diagram for Slurm scheduling process. 15
2.4 Slurm simulator’s architecture. 16
2.5 Slurm simulator’s synchronization process. 16
2.6 Schematic example of disaggregated architecture. 18
2.7 Model architecture for memory disaggregation. 19

4.1 Emulated disaggregated scenario applied in this work. 39
4.2 Emulated multi node disaggregated scenario. 40
4.3 High-level view of the Slowdown methodology. 42
4.4 Sensitivity curve for Triad workload. 44
4.5 Family of sensitivity curves for Triad workload. 45
4.6 Multi node Slowdown methodology. 47
4.7 Distinct sensitivity curves for stream benchmark. 48
4.8 Maximum prediction error for multi node applications. 49
4.9 Calculated memory bandwidth for distinct hardware performance counters. 51
4.10 Percentage of sustained memory bandwidth utilization for each application. 52
4.11 Percentage of read/write ratio for each profiled application. 53
4.12 Sensitivity curve for applications with high bandwidth usage. 54
4.13 Distribution of error using polynomial smoothing function. 56
4.14 Distribution of error for Memgen methodology and our approach. . . . 60
4.15 Slowdown model prediction maximum error using multi node approach. 62
4.16 Slowdown model prediction maximum error for remote execution. . . . 62

5.1 Augmenting the workload trace with real application data. 69

List of Figures xiv

5.2 Extended methodology to augment workload trace. 72
5.3 Trace memory heatmap distribution versus job size. 75
5.4 Sampling the Grizzly usage trace. 76

6.1 Graphical schemes of some memory allocations explored in this work. . 83
6.2 Graphical scheme of the memory allocation explored in this work. . . . 85
6.3 Disaggregation and contention model intregration into Slurm simulator. 87
6.4 Normalized throughput for various job mixes on each simulated system. 89
6.5 Distribution of response time for different systems and job mixes. . . . 91
6.6 Response time distribution for large and normal jobs. 92
6.7 Average system utilization under different job/node demands/capacities. 93
6.8 Effect of local memory threshold on throughput. 94
6.9 Normalized throughput for alternative disaggregated scheduling algorithms. 94
6.10 Total scheduling time averaged per system. 95
6.11 Limiting the number of remote nodes allowed to share memory. 96

7.1 Correlating memory overestimation to response time. 102
7.2 System throughput when all jobs overestimate memory demands. . . . 103
7.3 Normalized response time when all jobs overestimate memory demands. 104
7.4 Individual job response times when memory demands are overestimated.105
7.5 Normalized figures for individual job response times. 106

8.1 Proposed dynamic allocation of disaggregated memory on Slurm. . . . 109
8.2 Dynamic diaggregated allocation integrated into Slurm simulator. . . . 112
8.3 Normalized throughput for each memory configuration and job mixes. . 114
8.3 Continued: Normalized throughput for each memory configuration and

job mixes. 115
8.4 Distribution of response time for different systems and job mixes. . . . 116
8.5 Cost–benefit analysis: throughput per cost as a function of the job mix. 117
8.6 System resource provisioning as a function of the memory overestimation.118
8.7 Average memory and CPU utilization for the dynamic approach. 119
8.8 Individual job response time as a function of the baseline response time. 120
8.9 Effect of memory overestimation on throughput. 121
8.9 Continued: Effect of memory overestimation on throughput. 122
8.10 Decreasing the memory request at submission time for all jobs. 123
8.11 Normalized failures per job as a function of decreasing memory request. 124
8.12 Percentage of nodes sharing memory capacity. 126

List of Figures xv

1.1 Sensitivity curve for all single node applications. 133
1.2 Sensitivity curve for all multi node applications. Maximum of 4 nodes. 134
1.3 Sensitivity curve for all multi node applications. Maximum of 16 nodes. 135
1.4 Sensitivity curve for all multi node applications. Maximum of 31 nodes. 136

List of Tables

2.1 % of maximum memory usage per node for all jobs in Grizzly trace . . 22

4.1 Contention model inputs and output 47
4.2 Prediction error for linear and polynomial smoothing 56
4.3 Prediction error for smoothing functions and sampled data 57
4.4 Prediction error for estimated curves 59

5.1 Slurm configurations used for our simulations in Chapters 6 and 7 . . . 67
5.2 Simulated system configurations for Chapter 8 68
5.3 Summary of information provided by the job traces 69
5.4 Large and normal job characteristics for CIRNE generated trace 70
5.5 % of maximum memory usage per node for all jobs 73
5.6 Large and normal job characteristics for Google plus synthetic trace . . 74

6.1 Summary of disaggregated strategies 84
6.1 Continued: Summary of disaggregated strategies 85

To,
my family,

and the memory of my grandmother
Nair Zacarias.

acknowledgements

First and foremost, I would like to thank God for the blessing and the gift of life.
He has given me strength and encouragement through all the challenging times to

reach the conclusion of this dissertation and succeed in this part of my life’s journey so
far.

The completion of this thesis could not have been possible without the participation
and assistance (directly and indirectly) of several people. The biggest thanks go
to Dr. Paul M. Carpenter for all the help, advice, and support. I’m grateful
for the opportunity he gave me to complete my doctorate in such a prestigious and
amazing institution as the Barcelona Supercomputing Center (BSC), in which I had
the opportunity to meet some incredible people. I also thank him for all the learning
and guidance in shaping and polishing the papers to produce high-quality results. It
was a great pleasure having him as my advisor. I also would like to thank Dr. Xavier
Martorell who was always available to help me with the bureaucratic part of my
Ph.D. studies.

I would like to thank Dr. Vinícius Petrucci who took me in as a pupil during
my master’s and introduced me to Paul and the opportunity to reach higher academic
standards abroad. He pushed me and encouraged me to finish my master’s degree
as quickly as possible to work with Paul. Even though he did not participate at the
beginning of my Ph.D., he got in on the act. He willingly accepted the invitation to be
my co-advisor and since then, he has supported the work with valuable insights which
contributed to shaping this thesis as it is today.

I am also thankful to all my friends in Barcelona that were a spark of light and joy
during the dark solitude that was living alone in a distant country far away from my
family. I especially thank (in alphabetic order) Chenle Yu, Gussepe Bravo, Jie
Song, Omar Shaban and Peini Liu. They certainly made my days in Barcelona
even more delightful. Thanks for all chit-chats, coffees, dinners, and trips we shared. I
really enjoyed your companionship and I undoubtedly gained a significant amount of

Acknowledgements xix

knowledge about your culture. Hope someday I will be able to visit you wherever you
are.

Me gustaría agradecer a los parceros del “Chiringuito 1k” Gussepe Bravo, Jean
Piers y Rick Delgado por las fiestas, pichangas, bromas y chelas que compartimos
durante eses años. Por las historias que puedo contar y no tanto por los billetes que
dejé en los chiringuitos. Deseo volver a encontrarme con ustedes en futuros veranos.

I would like to thank the pre-defense committee and external reviewers that con-
tributed to shaping this thesis with their valuable and constructive comments. Without
their input, this thesis would not have the quality it has. I also would like to thank all
my roommates and friends from football groups who shared good times with me and
helped me to enjoy the city.

Finalmente, gostaria de agradecer a minha família que mesmo sabendo que estaria
longe me encorajaram a perseguir essa oportunidade. Minha gratidão vai especialmente
para minha mãe Elisangela, minha madrinha Cristina e meu primo Rafael.
Obrigado por surportarem essa distância e sempre fazerem memoráveis as minhas
férias. Obrigado pelos fantásticos São João que passei em casa. Saibam que vocês são
tudo para mim. Também gostaria de agradecer as pessoas maravilhosas que conheci no
São João de 2022 e que fizeram desse um ano muito especial. Em especial a Jessica
que espero compartilhar mais brejas e Lane (usando o apelido porque ela não gosta
do nome) com quem espero viver junto.

Como ápice desta dedicatória, gostaria de dedicar esse trabalho em memória de
minha vó Nair que acompanhou o começo dessa jornada mas infelizmente não está
mais aqui para celebrar comigo o fim desta etapa e o começo de muitas outras. A
senhora que desde muito cedo foi minha inspiração e o alicerce de nossa família. Sem
dúvidas lhe devo tudo que sou hoje. Espero continuar sempre sendo seu motivo de
orgulho.

Thanks all!!!

This work is part of a project that has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No 754337
(EuroEXA); it has been supported by the Spanish Ministry of Science and Innovation
(project TIN2015-65316-P and Ramon y Cajal fellowship RYC2018-025628-I), Gener-
alitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272), and the Severo
Ochoa Programme (SEV-2015-0493).

Acronyms

API Application Programming Interface.

BSC Barcelona Supercomputing Center.

BSC Bull Coherent Switch.

CAS Column Access Strobe.

ccNUMA Cache Coherent Non Uniform Memory Access.

CPU Central Processing Unit.

CXL Compute Express Link.

DDR3 Double Data Rate type three.

DIMM Dual In-Line Memory Module.

DRAM Dynamic Random-Access Memory.

ECDF Empirical Cumulative Distribution Function.

FaaS Function as a Service.

GCC GNU Compiler Collection.

GPU Graphics Processing Unit.

HPC High Performance Computing.

I/O Input and Ouput.

IaaS Infrastructure as a Service.

IMC Integrated Memory Controller.

Acronyms xxi

IPC Instructions per Cycle.

LANL Los Alamos National Lab.

LDMS Lightweight Distributed Metric Service.

LLC Last Level Cache.

LSF Load Sharing Facility.

MESIF Modified, Exclusive, Shared, Invalid and Forward.

NPB NAS Parallel Benchmarks.

NUMA Non Uniform Memory Access.

OS Operating System.

PBS Portable Batch System.

QoS Quality of Service.

QPI Quick Path Interconnect.

RAM Random-Access Memory.

RDMA Remote Direct Memory Access.

RDP Ramer–Douglas–Peucker.

RJMS Resource and Job Management System.

SDM Software Defined Memory.

SGI Silicon Graphics.

SLO Service Level Objectives.

SST Structural Simulation Toolkit.

SWF Standard Workload Format.

TORQUE Terascale Open-source Resource and QUEue Manager.

VM Virtual Machine.

Vou pedir licença pra contar a minha história
Rita de Cássia

Part I:

Prologue

1

CHAPTER 1

Introduction

In distributed systems, HPC infrastructures involve a large number of nodes intercon-
nected by a network to solve a wide range of problems. From a higher perspective,

the node is a fixed set of computing resources (e.g., processor, memory, storage) con-
nected to a single motherboard that can only be used by the applications running on the
given node [1]. These infrastructures tend to be designed with a fixed memory capacity
per node based on the most memory-demanding applications that run in the system
in order to deal with occasional peaks of data [2–4]. Due to the current node-based
constrained architecture, large idle fractions of processing or memory capabilities can
not be accessed by other nodes when Input and Ouput (I/O) intensive tasks are running
in a given node [5]. Since applications have a wide range of memory demands, from
tens or hundreds of megabytes up to gigabytes per core [6, 7], the mismatch between
fixed proportionalities and diverse sets of workloads leads to substantially underutilized
resources [8, 9].

Furthermore, processor and memory technologies are advancing at a diverging rate
in the past two decades. Upgrading components can be a challenge, especially for
the memory resource, since these two resources need to be upgraded together [10, 11,
2]. To keep up with emerging technologies and deal with different requirements of
applications, the system should have the ability to be flexibly augmented with new
memory technologies [2]. As a result, to mitigate scalability issues of node-based
systems and efficiently satisfy memory-driven applications, disaggregated approaches
have been proposed in order to allow a flexible and finer-grained allocation of resource
capacity to compute jobs [2, 12–14].

In the disaggregated design, individual components such as processor, memory,
and storage are interconnected over a network [15–19] rather than being restricted
to a bus on a single board [20]. These resources exhibit different trends in terms

3

of cost, performance, and power scaling [12]. While storage has been one of the
first resources to be disaggregated, memory is much more challenging [21]. However,
advances in network speed and scalability with new technologies, are enabling fast
access to hardware components that are disaggregated across the network [22]. Such
trends are making memory disaggregation feasible and pushing forward research
efforts toward its realization. The EuroEXA family of projects (ExaNoDe, ExaNeSt,
ECOSCALE) [16, 23], for instance, provides a global physical address space and the
ability for cores to access remote memory via Remote Direct Memory Access (RDMA)
or direct load–store instructions.

Adopting a disaggregated architecture also means redesigning the environment and
services that execute on HPC clusters to manage its new features. A key component in
this infrastructure is the RJMS, throughout this document also called resource manager.
It is responsible for efficiently tracking the cluster’s physical resources, submitting
and scheduling jobs, managing the queue of pending jobs, and reporting the status to
the users. A lot of research around resource managers has been carried out to solve
problems related to the current state–of–art on HPC systems. As an example, we
have the Slurm [24] resource manager, a popular open-source RJMS that provides a
modular and plugin architecture highly configurable for several extensions. However,
since disaggregated systems are still under development, all resource managers assume
the prevalent node-based architecture which couple together memory and processing
resources within node limits. Memory management is still bonded by the node’s
processing unit availability, which means that nodes without idle cores are excluded
from further allocations, even though there is memory capacity available to be used.

Allocation policies are in their infancy for these novel disaggregated memory systems.
It is important to investigate them to discover the best algorithm or heuristics to be
employed for both performance and efficiency. To facilitate research efforts in such
new architecture without practical prototypes, our methodology and validation take
advantage of the design presented by the Barcelona Supercomputing Center (BSC)’s
Slurm simulator. It is based on the original source code of the Slurm resource manager
and its modifications comprise mainly job execution and synchronization. Furthermore,
as demonstrated in [25] the simulator has stability through deterministic results from
multiple same-input executions and accuracy at the level of real machines, which
will allow us to seamlessly simulate different developed strategies using disaggregated
memory on several distinct systems.

Nevertheless, in disaggregated memory systems, requests from resource-hungry
applications can be executed consuming resources from other nodes, while others

1.1 Challenges and Contributions 4

can share memory to better exploit capacity and improve performance [26]. As a
consequence, sharing common memory devices or interfaces may incur an unsatisfactory
loss of performance (called degradation or slowdown) because concurrent memory access
requests can saturate the component [22]. Several general approaches to predict the
performance degradation had been proposed [27–29], including the Slowdown based
method which relates computing demands to applications degradation. They had been
successful for single node co-scheduling, but they have not been applied to disaggregated
memory.

My1 thesis focuses on modeling the impact of sharing resources in disaggregated
scenarios (Part II), proposing an efficient memory disaggregated infrastructure for
a cluster resource manager and its evaluation at-scale, and proposing a structured
simulated experimental methodology based upon controlled submission of workloads
traces (Part III).

1.1 Challenges and Contributions
In this thesis, our principal interest lies in achieving the same overall performance by
reducing the system’s total memory capacity. Concretely, we address the following
challenges:

Estimating Performance Degradation. The allocation of memory capacity for
a disaggregated system to compute nodes is performed in a more flexible way since
the resources are interconnected over a network [30]. Applications running on different
nodes can share memory devices and interfaces, thus performance can be affected
by contention [22]. However, in the disaggregated architecture, cache capacity is not
shared among multiple applications, which removes a major contributor to application
performance. Prior works have been successful for single node coscheduling [27–29],
but they have not been applied to disaggregated memory. For this reason, our analysis
is driven by the demand for memory bandwidth, which has been shown to have an
important effect on application performance.

Part II of my thesis focuses on performance predictions in a shared resource
contention environment. Before actually implementing and supporting disaggregated
features in modern resource managers, we must have a reliable mechanism of assessment
for scheduling decisions and job placement. We must also understand the degradation

1In what follows, unless stated otherwise, I will use the words: I, My, We, and Our to refer to my
exclusive contributions.

1.1 Challenges and Contributions 5

caused by resource sharing in disaggregated memory scenarios to guide future proposals
and developments. Applications sharing resources may suffer unacceptable amounts
of degradation, thus the resource manager must be able to avoid such scheduling
and maximize resource utilization while keeping application performance. Estimating
performance is a challenge for multiple reasons: 1 We must remove the effect of cache
resource in our contention model. 2 Disaggregated memory prototypes are still at
the research level.

In Chapter 4, we introduce a systematic methodology to build a Slowdown based
method. We show that profiling the application slowdown often involves significant
experimental error and noise, and to this end, we improve the accuracy by linear
smoothing of the sensitivity curves. We also show that contention is sensitive to the
ratio between read and write memory accesses, and we address this sensitivity by
building a family of sensitivity curves according to the read/write ratios. Extensive
real-machine experimentation and the results of workloads have shown that the models
predict performance degradation with at least an average error of 1.19 % and max error
of 14.6 %. Compared with state-of-the-art, the relative improvements are almost 24 %
on average and 33 % for the worst case.

Increasing Throughput and Utilization. In existing HPC systems, the rigid
boundaries between compute nodes limits compute and memory resource utilization.
HPC applications are rarely co-located on a compute node [10], so they have exclusive
access to self-contained nodes, and any of the node resources that are not used by the
running application cannot be made available to other applications. This problem of
stranded resources is especially critical for memory [1] because HPC application memory
demands vary dramatically, by orders of magnitude, due to application characteristics
and strong scaling [6, 7].

0
25
50
75

100

U
til

iz
at

io
n

(%
)

Memory CPU
(a) System matches job mix.

0
25
50
75

100

Memory CPU
(b) System mismatches job mix.

Figure 1.1 Resource utilization when the system matches the job’s demands and when
there is a mismatch.

1.1 Challenges and Contributions 6

Figure 1.1 shows an example timeline of total system memory and CPU utilization.
In Figure 1.1a, the mix of jobs matches the memory provisioning (system has 25%
large capacity nodes and 25% of job CPU hours need large capacity nodes),2 and
average CPU utilization is high, at 81%. Figure 1.1b shows the same system, but this
time 50% of the jobs need large capacity nodes. In this case, both CPU and memory
have low utilization (both average less than 48%). The cluster system clearly has
abundant unused CPU and memory resources, but they are not available for use by
the applications.

In Part III of my thesis, we address the problem of using memory disaggregated in
a resource manager and show that it is possible to increase throughput and utilization
using remote memory capacity. In Chapter 6 we show that depending on the level
of imbalance between the system and memory demands of scheduled jobs, memory
disaggregation enables resource savings of up to 33% compared to the state–of–the–art
resource manager. In addition, on average, it can increase the memory utilization by a
factor of 1.6, while having almost 90% of CPU utilization compared to the Baseline.

Simulated Experimental Methodology. Research in job scheduling cannot be
easily done using a production system. Optimizing its policies for HPC system
performance and user experience is a complex and multi-dimensional problem. It is
impractical to perform large-scale experiments on a real production machine since
doing so will likely negatively impact the service delivered to users. Furthermore,
disaggregated memory prototypes are still at the research level, and system software
is immature. In Part III of my thesis we also address the problem by providing a
simulated experimental methodology based upon controlled submission of workload
traces to evaluate the resource manager’s allocation decisions and their implications of
considering memory as a disaggregated resource.

We use a simulation approach for two main reasons. Firstly, there are no large-scale
HPC systems with disaggregated memory hardware including a complete software
stack. Secondly, and more importantly, simulations allow studies to be performed
more quickly without occupying the resources of large-scale production systems. We,
therefore, extend an existing simulation approach using Slurm resource manager to
account for memory bandwidth contention in disaggregated memory leveraging an
extension of our contention model (Part II). We then use the extended Slurm simulator
to determine the overall system throughput, job queuing, and execution time of distinct
large-scale HPC systems.

2Details of the experimental evaluation are in Chapters 5 and 6.

1.2 Outline of Thesis 7

Implication of Memory Demands on System Performance. Even though
dynamic resource assignment has been explored in [31–34], HPC job schedulers require
the definition of the upper bound usage as the initial request to statically assign
resources to jobs and to guarantee the necessary resources throughout its complete
execution [11, 35]. The request is based on the user’s knowledge or experience estimating
the resources, whose configuration remains unchanged once allocated to a job [11].
Nevertheless, users likely overestimate their demands to avoid having the job killed [36–
38, 2]. Even in a scenario of memory disaggregation, system throughput and response
times have large effects when users overestimate their requests.

In addition to this problem, Peng et al. [10, 11] demonstrated that jobs in current
HPC systems use only a fraction of the memory capacity, with imbalanced memory
usage happening across compute nodes and time in a job. To shorten the time to
solution, applications with good scalability are distributed over a large number of nodes
to accelerate execution, resulting in low memory consumption on a single node [10].
So, the imbalanced usage on a few nodes in a job causes severe underutilization of
resources allocated due to the homogeneously configured nodes [11].

In Part III of this thesis, we investigate how critical memory demand bounds are for
maximising system throughput and minimising job response time (defined to be waiting
time in the queue plus execution time). We analyse to what degree the users would
have a natural incentive to provide accurate memory bounds. We further investigate
the potential of dynamically managing disaggregated memory. To better understand
disruptive architectural changes on future systems, job memory usage details are critical
for guiding design space exploration. In Chapter 7 we demonstrate that even when
there is a large effect on system throughput (-25%) and response time (5 times higher),
there is very little direct incentive for the users to be accurate in their estimates, with
only an 8% increase in response time. We further demonstrate in Chapter 8 that
taking advantage of memory temporal and spatial imbalance among jobs, delivers
improvements up to 18% in throughput, 38% in throughput per dollar, and up to 69%
reduction in job response time (median), compared to a static policy, when there are
imbalanced memory usage and overestimated demands on underprovisioned systems.

1.2 Outline of Thesis
The most significant contributions of my research, detailed in the previous section,
are as follows. 1 A Slowdown based method to predict applications performance on
shared disaggregated memory scenarios. 2 An efficient disaggregated infrastructure

1.2 Outline of Thesis 8

implemented in a popular RJMS. 3 A structured simulation methodology based
on the submission of job traces to study several distinct scenarios and the impact of
memory provisioning on the system.

This thesis is organized into five Parts, with nine Chapters arranged according to
the outlined structure. The Prologue, which serves as Part I, introduces and provides
details about the thesis and is followed by the subsequent chapters:

• Chapter 1 briefly contextualizes the research and introduces the motivations of
this work. We also present the challenges faced during the completion of this
work and its contributions.

• Chapter 2 describes basic concepts to the understanding of this thesis. We provide
a background on RJMS, the concept of resource disaggregation, and different
workload datasets that can be employed to simulate the system’s performance.

• Chapter 3 discusses the extensive body of related work. We begin listing works
related to estimating performance degradation and how we differentiate from
them. We further list previous works toward realizing memory disaggregation
and we close the Chapter by summarizing the considerations of disaggregated
works.

The Part II of this thesis, titled Modelling Contention-Aware Performance Prediction
Technique, elaborates on our methodology and the results of our study on modeling the
effect of shared resources in disaggregated scenarios. This is discussed in the subsequent
chapter:

• Chapter 4 describes the performance prediction methodology and the developed
contention model for disaggregated memories. It also details the hardware
used to run our experiments, the set of single and multi node applications we
profiled to create the contention model, and the concept of disaggregated memory
employed in this work. Much of the content in this Chapter is presented in our
papers [39, 40].

In Part III of this thesis, titled Allocation and Scheduling In Disaggregated Memory
Systems, we present the proposed disaggregated infrastructure for a cluster resource
manager and its evaluation at-scale using a structured simulated experimental method-
ology. It is extensively detailed in the following chapters:

1.3 Publication List 9

• In Chapter 5 we introduce the methodology and simulated infrastructure used in
this work to evaluate the proposed disaggregated approaches. We also detail the
methodology applied to generate the workload employed in all our experiments.
The methodology detailed in this Chapter is employed in our papers [40–42].

• Chapter 6 introduces how we extended the resource manager to support disag-
gregated memory, its evaluation at scale, and how we integrated the developed
contention model in our simulated environment. The content of this Chapter can
be found in our paper [40].

• In Chapter 7 we investigated how the system’s overall throughput and response
time would be affected, according to various assumptions on the user’s ability
to predict the memory consumption. We demonstrate that users should receive
incentives to provide accurate memory usage estimates, therefore having less
impact on the overall performance. The contributions presented in this Chapter
are published in our paper [41].

• Chapter 8 investigates the impact of dynamic memory management and memory
demands on system throughput, response time, and cost–benefit. We find
that even when users correctly estimate their maximum memory usage, system
performance increases up to 12%. We can achieve even higher improvements in
performance when the demands are overestimated in underprovisioned systems.
Our paper [42] under submission presents much of the content of this Chapter.

Finally, in Epilogue (Part IV) which is essentially the Chapter 9, followed by the
Bibliography (Part V) we summarize the conclusions of all thesis contributions, give
future research directions and list the references used during this research.

1.3 Publication List
This thesis is based in part on the following published papers:

1 Felippe Vieira Zacarias, Rajiv Nishtala, Paul Carpenter, “Contention-aware ap-
plication performance prediction for disaggregated memory systems”, in Proceedings
of the 17th ACM International Conference on Computing Frontiers. 2020.

2 Felippe Vieira Zacarias, Paul Carpenter, and Vinicius Petrucci, “Improving HPC
System Throughput and Response Time using Memory Disaggregation”, In IEEE 27th
International Conference on Parallel and Distributed Systems (ICPADS), 2021.

1.4 Artifact List 10

3 Felippe Vieira Zacarias, Paul Carpenter, and Vinicius Petrucci, “Memory De-
mands in Disaggregated HPC: How Accurate Do We Need to Be?”, Best Paper
Award in the International Workshop on Performance Modeling, Benchmarking
and Simulation of High Performance Computer Systems (PMBS). IEEE, 2021.

The following publication is under preparation:

1 Felippe Vieira Zacarias, Paul Carpenter, Vinicius Petrucci, “Dynamic Memory
Provisioning on Disaggregated HPC Systems”.

1.4 Artifact List
This thesis also provides all materials used during our work in the hope that others
can extend and build new insights upon it. The products of this work are available to
the public and can be found in:

1 Artifact for Contention-aware Application Performance Prediction for Disaggregated
Memory Systems. DOI: 10.5281/zenodo.5647805

2 Artifact for a Simulation approach to evaluate disaggregated memory. DOI: 10.5281/zen-
odo.5806389

3 Artifact for a simulation approach to evaluate the effects of memory demands on
disaggregated memory. DOI: 10.5281/zenodo.5537135

4 Artifact for dynamic memory provisioning on disaggregated HPC systems. DOI:
10.5281/zenodo.7881019

https://zenodo.org/record/5647805
https://zenodo.org/record/5806389
https://zenodo.org/record/5806389
https://zenodo.org/record/5537135
https://zenodo.org/record/7881019

CHAPTER 2

Background

In this Chapter, we introduce some basic concepts that will provide the bases to
understand the problem discussed in this thesis. We define the concept of RJMS and

its relevance to HPC systems. We then describe a popular resource manager for HPC
systems used in this work, as well as the applied simulation infrastructure based on it.
We also give an overview of the novel concept of memory disaggregated solutions and the
importance of researching HPC resource management for this upcoming architecture.
Finally, we detail the characteristics of the datasets applied to the performance analysis.

2.1 Resource and Job Management System
The increasing number of computational resources and heterogeneity in modern HPC
systems has created a diverse and enormous infrastructure that can be used to deal
with a wide range of problems. However, exploiting the power of these systems is
not an easy task as node architectures have become more complex [43]. The lack of
proper software responsible for efficiently allocating the varied available resources may
ultimately yield fragmentation, low system utilization, and increased user waiting times.
Accordingly, a varied number of RJMS have been developed to manage these large scale
compute clusters. The task associated with this middleware is to distribute computing
power to users within the parallel infrastructure. It attempts to satisfy users’ requests
and achieve good system utilization by efficiently assigning it to the resources [44]. User
allocation requests, which include various constraints and specifications of resources,
will be treated in the system as a scheduling object called Job.

The two main concepts around RJMS that capture its basic activities are the job
scheduler and resource manager [45, 46]. Job schedulers will match jobs to resources

2.1 Resource and Job Management System 12

from several users with different priorities, resource requests, and duration. While
the resource manager deals with distinct resources capabilities and availability to well
utilize them given the jobs being executed. According to [45, 46], the key functions
associated to a RJMS are depicted in the Figure 2.1.

Compute
Cluster

Job Log Files

Job Monitoring and
Management

Job Queues

Queue
Management

Policies

Resource
Allocation
Policies

Resource
Allocations

Job
Assignment

Job Dispatch

Job Retirement Resource
Management

Policy

Current
Resource

States

Resource Monitoring
and Management

Job QueuesJob Queues

Pending
Job Reqs

Job Execution

Resource
Management

Job Lifecycle
Management

Scheduling

U
se

r a
nd

 A
dm

in
is

tra
to

r i
nt

er
fa

ce
s

Figure 2.1 Resource and job management system architecture. Figure reproduced
from [46, 45].

The typical workflow of a RJMS is as follows: Users send jobs through the job
lifecycle management function, which in turn places the jobs in the pending queue
to wait for scheduling. The function will also be responsible for applying queue
management policies to sort and prioritize pending jobs according to some criteria.
The resource management function provides the scheduler with aggregated information
from the detectable resources within the system. Further, the scheduler allocates and
assigns the resources to run the job. Finally, the job execution function launches the
job on the resource and manages closing down and cleaning it upon job completion.
Statistics about the jobs will be logged by the job lifecycle function for historical
purposes of investigation or administrative use.

There has been significant evolution in the sophistication of resource management
and job scheduling as resources and jobs have become more diverse. A number of
schedulers have been developed over the years to address various supercomputing and
parallel data analysis as well as computer, network, and software architectures [46,
44, 45]. We can list several softwares as Portable Batch System (PBS) [47, 48], Load

2.1 Resource and Job Management System 13

Sharing Facility (LSF) [49], LoadLeveler [50], Moab [51]. And open-source alternatives
as Slurm [24], Maui Cluster Scheduler [48], Terascale Open-source Resource and QUEue
Manager (TORQUE) [52] and OpenLava [53]. Among them, Slurm [24] is one of the
most popular [37] and used resource and job management system on current HPC
systems.

2.1.1 Slurm Resource Manager

Slurm is an open-source HPC resource and job management system which features a
scheduler with a multi-threaded core and a plug-in module architecture [46]. Since it
uses a modular architecture, it is highly configurable with a variety of extensions for
workload, queueing, scheduling, sharing, etc. Figure 2.2 illustrates the main components
of Slurm’s architecture.

Slurmctld
(primary)

Slurmctld
(backup)

slurmdbd
(optional)

Database
slurmd

scontrol

sinfo

squeue

scancel

sbatch

User commands
(partial list)

slurmd slurmd slurmd.....

Controller daemons

Compute node daemons

Other
clusters

Figure 2.2 Slurm’s architecture. Figure reproduced from [54].

Slurm uses a centralized manager (or controller), slurmctld, which is responsible
for scheduling, allocating resources to jobs, monitoring job execution, and mediating
contention to resources through a queue of pending jobs. Each compute node executes
an instance of the slurmd daemon, which communicates with the controller to receive
work, manage job execution on the node and return the completion status. Users
interact with Slurm through a set of command-line tools to submit jobs, terminate
queued or running jobs, and request system information and job status. The setup
can also have an optional Slurm database daemon, called slurmdbd, responsible for
recording the cluster account information in a single database. System administrators
can use available administrative tools to monitor and/or modify configuration and
state information on the cluster.

2.1 Resource and Job Management System 14

The default node allocation of Slurm is the exclusive also known as server-based
or node-based allocation mode. In this allocation mode a job is placed only if a node
can satisfy the amount of requested core and memory resources [55], so even if not
all resources within the node are utilized by a specific job, no other job is allowed to
share the resource. As a matter of fact, many HPC systems disallow the colocation of
different workloads on the same compute node to minimize the negative impact caused
by inter-workload interference [56, 10].

To deal with the inefficiency of the exclusive mode, Slurm allows fine-grained cluster
management by tracking core and memory resource usage. However, in environments
where memory is a resource of interest, the user must specify the maximum amount of
real memory per node or per core. Due to its node-based approach, requests for more
memory per node than is available cannot execute, because Slurm does not allow jobs
to use more than the physical memory capacity. Furthermore, memory and processing
unit are tightly coupled, which means that if there is a memory resource available but
no cores, the resource will not be used in the scheduling process. To deal with this
problem, users tend to explore the job scalability, distributing it over a large number
of nodes, therefore decreasing the memory required per node.

The allocation and scheduling of a job works as follows, after the submission of a
job, the resource manager executes one preliminary analysis of the request through
the same process applied in the real scheduling. However, instead of launching the
job, it only asserts whether the job can run in that particular architecture given its
demands. This quick evaluation promptly raises possible errors for the user preventing
the execution of the job. Figure 2.3 presents a simplified diagram of the sequential
interactions that take place during the job scheduling process.

Jobs ready to scheduling are selected from the global queue of pending jobs. Then,
all available nodes that meet the job’s demands in terms of resources (ex. cores and
memory) are selected to further evaluation. At this initial point, memory is only a
constraint if the requested memory is higher than the node’s physical memory. Once
the list of potential nodes is completed, the Selection plugin decides the nodes that
best satisfy the request. This stage consists of removing nodes that at this moment
don’t have enough idle processing or memory resources to support the job and later,
selecting nodes based on a specified policy. The final step modifies the system state
information to allocate the resources and initiate the batch job. When the batch job
finishes, allocated resources are freed and become available to be used by other pending
jobs.

2.1 Resource and Job Management System 15

Schedule

Best nodes

Submitted Job

Select
nodes

Selection
plugin

Allocate
nodes Launch job

Job's requirements

Available nodes

Return

Selected nodes

Updated structures

Job's requirements

Return

Return

Figure 2.3 Simplified sequence diagram for Slurm scheduling process.

2.1.2 Slurm Simulator

Optimizing the job scheduler and its policies for HPC system performance and user
experience is a complex and multi-dimensional problem. It is impractical to perform
large-scale experiments on a real production machine since doing so will likely negatively
impact the service delivered to users. The BSC Slurm simulator proposed by [57, 25]
enables a precise and deterministic evaluation of the job scheduler by running it in a
simulation environment (it can be found in [57]). It is based on the original Slurm source
code so, unlike theoretical models, it is able to capture all parameters and behavior
that occur in a real environment. This feature gives the simulator the possibility of
applying Slurm parameters used in real environments to have a more precise evaluation
of its executions.

The Slurm simulator uses the standard slurmctld controller and a simplified slurmd,
which emulates job execution on a cluster node. In addition, the Slurm simulator
manager (sim_mgr) reads the input trace, submits jobs to the controller at the correct
submission time, and manages the overall simulation. Figure 2.4 depicts the simulator’s

2.1 Resource and Job Management System 16

architecture and its main components. It also details in orange the modules included
or modified in the Slurm structure, while the yellow boxes represent modules with
little or no modifications.

Trace

sim_mgr

slurmctld slurmd

SLURM
logs/outs

Shared
Memory

Individual
job's & system's

metrics

SyncSLURM API
(sbatch)

SLURM simulator

slurm.conf

Figure 2.4 Slurm simulator’s architecture. Figure reproduced from [25].

The components coordinate the execution through a multi-semaphore synchroniza-
tion approach depicted in Figure 2.5. Slurmd unlocks the first semaphore after finishing
all message exchanges with the controller. It enables the simulator manager to add
one second to the simulation and process all the events of that second (ex. submitting
jobs to the controller). Then, the second semaphore is incremented by the simulator
manager to unlock slurmd communication with the controller. During its execution,
the simulator generates standard output logs for job completion and daemon execution.

do_work()

post(simulator)

wait(slurm)

wait(simulator)
do_work()

send SIM_HELPER
wait response

post(slurm)

get SIM_HELPER

do_work()

respond ok

sim_mgr slurmd slurmctld

Figure 2.5 Slurm simulator’s synchronization process. Figure reproduced from [25].

The simulator receives as input a standard Slurm configuration file (slurm.conf)
and a trace capturing the HPC job submissions and actual execution times. The
configuration file specifies the number of nodes and queues, selection and scheduling

2.2 Disaggregated Memory 17

policies, and so on. The trace binary input used for the simulation is based on the
Standard Workload Format (SWF) [58, 59] (see details in Section 2.3.1), which is a
standardized way to describe the submission of jobs to a system. The simulator can
therefore use existing real logs or traces from synthetic workload generators that are
publicly available in online repositories as in [60].

2.2 Disaggregated Memory
Although Cache Coherent Non Uniform Memory Access (ccNUMA) machines are
available with hundreds of sockets, for example, Silicon Graphics (SGI) Altix [61]
and Bull Coherent Switch (BSC) [62], it is difficult to scale cache coherent systems
to thousands of nodes. Modern HPC systems are therefore typically built from
thousands of ccNUMA nodes communicating via a fast interconnect such as InfiniBand
or OmniPath. However, they often suffer from memory underutilization [55].

According to [2, 10, 55], the fundamental reason is the current node-based memory
allocation. Computing and memory resources are tightly coupled in each node, resources
are requested in units of nodes, and job memory allocation is based on peak usage.
Furthermore, HPC systems provide little flexibility in provisioning memory, because
Dual In-Line Memory Module (DIMM) should be installed in a balanced way across a
small number of memory controller channels, leading to coarse-grained rules of thumb
like the common 2 GB per core [6].

However, memory utilization varies widely from one job to another over time across
the nodes, which results in underutilization when there are jobs with small memory
footprint [10, 55]. Additionally, many jobs on HPC systems also overestimate their
memory demands, thus underutilizing memory slots dedicated to the specific jobs [2].
Consequently, HPC systems suffer from stranded resources because memory that is
not used by one job cannot be used by another on a different node.

Enabled by the advances in network technologies, several approaches have been
proposed towards a general-purpose architecture to disaggregate resources, as an alter-
native to the monolithic node-based approach. By providing a fine-grained allocation
of resources, they aim to solve the problem of imbalance in memory usage and expand
memory capacity by exposing the global memory to all machines. This scenario is
boosted due to several factors which we can mainly cite the increase of in-memory data
processing, instead of providing large memory nodes with lower efficiency regarding cost
and power, the memory disaggregation allows more memory than locally supported by

2.2 Disaggregated Memory 18

a node, and the overestimation when users allocate worst-case scenarios to request for
computational resources.

In the disaggregated design, individual components such as processor, memory, and
storage are interconnected over a network to share memory but without cache coherent
data sharing [63, 16, 18]. Figure 2.6 presents an example of a disaggregated design. In
this design, every resource is managed as a pool, and a node is assembled based on the
user’s request. The EUROSERVER [16], ExaNoDe [23] and EuroEXA [64] family of
projects has pioneered a disaggregated system architecture, which provides a global
physical address space and the ability for cores to access remote memory via RDMA or
direct load–store instructions. By appropriately configuring the cache policy, remote
memory accesses can be cached locally. The dReDBox project [63] built a low-power
architecture with an optical network connecting hot-pluggable modules that provide
compute, memory, and accelerator resources. Its software-defined global memory and
peripheral resource management offer fine-grained resource allocation on-demand to
improve utilization.

Interconnecting
Network

Memory

C C C C
C C C C

GPU

C C C C
C C C C

C C C C
C C C C

Disaggregated
Memory

Disaggregated
Storage

Disaggregated
Specialized
Hardware

Nodes

Figure 2.6 Example of disaggregated architecture. Figure reproduced from [2].

In this context of continuous efforts from the academia and industry to realize
memory disaggregation with low monetary cost, high performance, and low latency,
the new concept of the Compute Express Link (CXL) [65–67] emerged. It is an
industry-supported cache-coherent interconnect for processors, memory expansion, and
accelerators. Designed to be an open standard interface for high-speed communication,
CXL maintains memory coherency between CPU memory and the attached devices [66,
67]. Its reduced software stack complexity yields low-performance impact, as the direct-
connected memory can be accessed with roughly the same latency as a Non Uniform
Memory Access (NUMA) hop [68, 69]. Therefore, CXL provides a practical basis to
implement memory disaggregation in terms of low latency interconnect protocol [68].
However, it has not been made for production yet [30].

2.3 Workload and Job Traces 19

In our work we use the disaggregated architecture model shown in Figure 2.7. It
is inspired by recent disaggregated memory models and the UNIMEM approach [16],
which implements a global address space and allows its access either using ordinary
load–store instructions or RDMA. Similar to these designs, our architectural model
features computing units that execute their own Operating System (OS), and can
access memory attached to it (local memory access) as well as memory attached to
another computing unit through a global interconnect (remote memory access). The
design supports caching locally at the unit that requested access or remotely at the
unit attached to the memory.

Core
Cluster

Core
Cluster DMA

Local interconnect

Memory
controller

Interface to
remote

DRAM Global Interconnect

Core
Cluster

Core
Cluster DMA

Local interconnect

Interface to
remote

Memory
controller

DRAM

Interfering
Application B

Application A

Figure 2.7 Model architecture for memory disaggregation. Remote memory accesses
are routed to the appropriate node through a global interconnect.

2.3 Workload and Job Traces
According to [70, 71, 58, 72] the study and design of computer systems requires good
models of the workload because it has a large effect on the observed performance.
Therefore, realistic workloads are crucial to determine performance in practice. The
need for realistic workloads is important in evaluating supercomputers because they
are very expensive, therefore it is rarely an option to conduct extensive experiments in
production [70].

Most systems maintain accounting logs for administrative use, describing valuable
information about all the activity on the machine, and also about the attributes of
each job that was executed [58]. However, there is no standard for parallel schedulers,
and each one defines its own log format [73]. On the other hand, workload models are
based on some statistical analysis of workload logs, in order to expose their underlying

2.3 Workload and Job Traces 20

principles. They enable the creation of new workloads that are statistically similar to
the observations but can also be changed at will [58].

2.3.1 Standard Workload Format

To help the researchers use real or synthetic workloads and ease the use of workload
logs and models, Chapin et al. [58] defined the concept of the SWF. Applying this
standard, programs that analyze workloads or simulate systems only need to parse a
single format applicable to several workloads [59]. A major breakthrough in this design
is the possibility of using the format for both real and synthetic workloads [58].

The SWF follows some principles, it stores each workload in a single file with one
line per job, has space-separated fields, and has exclusive use of numerical values [73].
The fields were chosen so that all information from logs would be saved except very rare
fields [58]. Irrelevant or missing fields for a specific log or model appear with a value
of −1, and all other values are non-negative. The standard allows comments starting
with the semicolon [59], which are ignored during the parse. Usually, at the beginning
of the file, there are several such lines describing the workload and the environment
from which the traces were collected. It also uses the line number as the unique job
identifier. Identifiers for jobs from workloads converted to the standard format are
discarded since they are not always integer or unique [58].

The standard was established when the main concerns were arrival time and
basic resources such as processors and runtime. Feilteson et al. [73] pointed out that
researches suggest it might be important to follow the dynamics of resource usage. To
use such data, the standard workload would need to be augmented with additional
data that includes multiple records of the same job. Both the original data about the
jobs and the additional file including the dynamic records would be associated based
on the job identifier.

2.3.2 CIRNE Model

The CIRNE Comprehensive Model [70] provides a model for supercomputer workload
to tackle problems found with previous workload models, more specifically modeling
request time and the possibility of cancellation. In order to do that, it uses four logs
from different distributed memory machines. It models the arrival pattern, execution
time, requested time, status, and job sizes of those logs to generate similar workload
logs. To better capture the dynamics of the system, the model takes into account
the seasonal working day cycle to fit the arrival instant, as typically more jobs are

2.3 Workload and Job Traces 21

submitted during the day than at night. Another insight captured by Cirne et al. [70]
when modeling the logs is that there is a strong correlation between short execution
time and poor request accuracy, as failed jobs usually terminate sooner and therefore
having in general poorer accuracy than completed jobs. The model then derives the
execution time from the explicitly modeled accuracy and requested time to complete
the reproduction of synthetic workload traces.

2.3.3 Google Trace

To support the research on scheduling for large-scale compute clusters, in 2020 Google
released detailed scheduling information from 8 different Google compute clusters
(cells) [74]. Each cell is a collection of machines that operate as a single management
unit. The traces describe several days of workload on a single cell and it is separated
into several tables, which store information provided by the management system and
the individual machines. The trace has data from two kinds of resource requests the
cluster scheduler receives, a job which describes resources needed and computations a
user wants to run, and an alloc set, which describes the resources reservation the job
can run. Each job may run several tasks, which inherit several properties from the job,
e.g. priority, resources request [74].

Jobs may be classified according to their assigned priority, which defines how they
will be scheduled. Jobs with the lowest priorities usually incur low or no internal
charges, and have weak or no Service Level Objectives (SLO). These jobs can be
evicted to ensure that higher priority jobs receive their expected level of service, as
jobs in this category require high availability [74]. All jobs also have a scheduling
class property that roughly represents how latency-sensitive the job is. Higher values
represent more latency-sensitive tasks (e.g. user-facing service jobs) and lower values
represent non-production tasks or often batch jobs (e.g. development, non-business
critical analyses, etc.) [75].

The trace does not have the exact hardware specification of each type of node, as
some attributes have been obfuscated for confidentiality reasons, especially resource
requests and utilization measurements. Memory sizes are normalized and scaled by di-
viding their values by the maximum machine memory size observed across all traces [75].
The usage values are reported from a series of non-overlapping measurements, typically
5 min long. During each measurement period, the data is sampled once per second
and the memory usage collected every sampling period is aggregated into average and
maximum usage over the time window [75].

2.3 Workload and Job Traces 22

2.3.4 Grizzly Trace

In 2019, Los Alamos National Lab (LANL) released an HPC memory usage trace,
which details the memory usage of three HPC clusters in the period from late 2018
through early 2019 [56, 76]. In this thesis, we use the dataset for the largest system,
Grizzly [77], a mid-range TOP 500 supercomputer with 1490 nodes, each with 128 GB
DRAM. The complete Grizzly trace consists of 53.4 GB of (uncompressed) data, which
comprises over 70, 000 jobs and 560 million records.

Table 2.1 % of maximum memory usage per node for all jobs in Grizzly trace. (Small:
≤ 32 nodes; Large: > 32 nodes)

Max memory use Usage
(GB/node) All Small Large

(0,12) 73.29% 63.5% 77.77%
[12,24) 12.43% 20.24% 8.86%
[24,48) 8.17% 8.45% 8.04%
[48,96) 5.65% 6.98% 5.04%
[96,128) 0.46% 0.83% 0.29%

The memory usage for this dataset is collected using the Lightweight Distributed
Metric Service (LDMS) [78], a framework for collecting metrics data from computational
systems without a significant negative impact on the application’s performance running
on the system. The data is a periodic snapshot, relatively fine-grained (once every ten
seconds) of the free and active memory statistics for every node. It identifies which job
used that memory. Since the job identifications are unique, it is possible to identify the
parallel jobs running between multiple nodes and therefore deduce the job’s number of
nodes and duration [56].

Table 2.1 presents the Grizzly trace memory distribution considering the maximum
memory used by every job in any node. Even though the system utilization is reported
to be 78% [56], it is clear from its distribution that memory wise the system is
underutilized and provisioned to run the worst cases. We can notice that the majority
of jobs use less than 24 GB. According to [56], average node level memory utilization
is 18% of its capacity and there is a large gap between the node’s worst-case memory
usage and its common case utilization. We can also see similar numbers in Peng et
al. [10] whose results show that for a different HPC system, more than 90% of jobs
utilize less than 15% of the node memory capacity, and for 90% of the time, memory
utilization is less than 35%.

CHAPTER 3

Related Work

In this Chapter, we discuss the work related to this dissertation. We begin the Chapter
by discussing the topic of estimating performance degradation in Section 3.1. Given

the importance of the disaggregated approach and all the challenges in its development,
it is also important to pay special attention to the problem of characterizing the
performance degradation of an application when sharing resources in this architecture.
The rest of the section will present prior efforts to identify, quantify or model the
applications’ performance due to shared resource contention.

Section 3.2 presents previous works toward realizing memory disaggregation. Some
of the listed works propose page based solutions that are either implemented on the
kernel or as an extension of the hypervisor memory management. Section 3.3 presents
some works that address utilization and the dynamic characteristics of resource usage.
We also discuss the topic of accessing and pricing schemes for disaggregated systems,
since the current models (often based on core-hours) should be adapted to take into
account the disaggregated resources in the newly developed architectures. And finally,
Section 3.4 summarizes the considerations of disaggregated works and the analyzes
carried out in this thesis.

3.1 Performance Prediction Modelling

Slowdown Based Methods — De Blanche et al. [28, 79] propose a slowdown based
characterization method to estimate the applications’ slowdown when sharing the
memory bus. Their sensitivity curve is obtained using synthesized memory traffic
and the contentiousness is found using performance counters. De Blanche et al. use a
fixed read or write ratio to create the sensitivity curve, while, for better accuracy, we

3.1 Performance Prediction Modelling 24

calculate the performance degradation using the sensitivity curve that best represents
the interfering application.

Bubble-Up proposes a generalisable methodology for predicting performance degra-
dation from contention for shared resources in the memory subsystem [27]. For
Bubble-Up, sensitivity, and contentiousness quantify occupancy of the Last Level
Cache (LLC), but it is pointed out that the methodology can be applied to other
metrics. Since Bubble-Up only considers cache occupancy, it cannot be applied in
its original form to our problem, which has separate caches. The work is further im-
proved in [80] to dynamically measure the application’s sensitivity for latency-sensitive
applications.

Bandwidth Bandit [29] proposes a quantitative profiling method for analyzing
the performance impact of contention for shared memory resources to determine the
application’s sensitivity to latency and bandwidth. For performance prediction it uses
a bandwidth graph, which is a quantitative description of the application’s sensitivity
to bandwidth contention, then it finds the throughput of a given number of co-running
instances. Rather than stealing cache capacity as it is done in the author’s previous
work [81] (see below), Bandwidth Bandit executes the applications in the same socket
using 𝑛 instances of a single-threaded application.
Cache Contention — Several works have been proposed to model how applications’
performance is affected by changes in the amount of available shared resources, especially
cache capacity. Our work does not use cache interference, as it is misleading when
coscheduling applications using separate cache hierarchies [28]. Eklov et al. [81] propose
a methodology to measure application performance and bandwidth as a function of the
cache capacity occupied by an interfering application. Zhao et al. [82, 83] capture the
aggregate cache and bandwidth utilization of all cores and characterize the performance
degradation using a regression approach, which admits different sub-functions depending
on which contention factors are dominant.

Casas et al. [84] present a methodology that quantifies an application’s utilization
of the memory hierarchy, specifically, the capacity and bandwidth of shared caches
to predict the application’s performance when the required memory resources are not
available. Casas et al. qualitatively demonstrate that their validation methodology has
higher accuracy than prior work [81, 29].
Online Mechanisms — The following works provide online methods to estimate
the performance of applications already running in contention and using simulation.
Subramanian et al. [85, 86] and Xiong et al. [87] use, respectively, the memory request
rate, cache access rate, and Instructions per Cycle (IPC) to estimate the slowdown

3.1 Performance Prediction Modelling 25

for individual applications. Their method involves giving high priority to the target
application for a short time to estimate the value of its respective metric if the
application were running alone, and then using this value to calculate the experienced
interference. Barve et al. [88] present an open-source framework that covers a wide
range of application classes to guide providers in building performance models. The
framework can be used to predict interference levels and make effective resource
management decisions. In its offline phase, it defines and clusters a collection of
resource utilization metrics and specifies a resource stressor prediction model. The
model is applied in the online phase to stress a target application across different
resource utilization regions to train a model, later this model is used to predict the
application performance at runtime.
Interference-Related Benchmarks — The subsequent works provide a set of
benchmarking tools to identify or create contention in shared resources rather than
predicting the performance of applications under contention. Delimitrou et al. [89]
present a collection of microbenchmarks to apply contention or to identify shared
resources an application creates contention to, and similarly, the type and amount of
contention the application is sensitive to. Xu et al. [90] propose a profiler based on
supervised machine learning to identify bandwidth contention in NUMA architectures.
Molka et al. [91] use multiple micro benchmarks to stress different resources in the
memory system to identify hardware performance counters that can be used to detect
problems caused by memory access.

In contrast to the aforementioned works, our modeling approach provides improve-
ments for a singular reason: Our approach targets performance prediction due to
sharing of disaggregated memory, while the prior works use application working set
size or local bandwidth as their measure of pressure to create the sensitivity curve.
As noted in this thesis, the cache contention characterization method is misleading
for predicting the performance of applications using separated cache hierarchies. For
this reason, we proposed using a family of smoothed sensitivity curves to account
for varying ratios between read and write memory accesses to increase accuracy and
decrease the effect of outliers. Our results in Chapter 4 show that our Slowdown
methodology is a good approximation for predicting the performance of applications
under remote memory access interference delivering higher prediction accuracy than
the state–of–the–art with an average error of 1.19% and max error of 14.6%.

3.2 Disaggregated Solutions 26

3.2 Disaggregated Solutions
Since disaggregated architectures are being developed and full scale prototypes are not
ready yet, researches have been mainly focused on the requirements needed to support
memory disaggregation [92]. Moreover, despite the promising benefits of resource
disaggregation it is still unclear how to properly manage it [22], especially at a large
scale.
Memory Disaggregation Systems — Gu et al. [14] implement a scalable and
decentralized remote memory paging solution to enable memory disaggregation. It
divides the swap space of each machine and distributes the pages across many remote
machines using RDMA operations for all remote I/O operations. Its architecture
comprises a block device and a daemon that executes in every machine without central
coordination. The block device exposes an I/O interface to the virtual memory manager
which treats the address space as a fixed size partition, while the daemon runs in user
space and responds to memory requests. Their solution is implemented as a loadable
kernel for Linux using RDMA for communications.

Jo et al. [55] present better performance than [14] by introducing a novel RDMA-
backed caching layer for memory disaggregation. They develop a custom paging module
that automatically adapts to the memory access patterns of individual processes to
minimize the inherent overhead of remote memory accesses. Yoon et al. [93] develop
a paging based memory disaggregation system on top of unikernels. It provides fast
remote memory access improving page fault latency by overlapping the page fault
handling with asynchronous network requests and leveraging unikernels features to
remove inter-process security checks and locks latency. Their solution achieves up to
2.2× higher performance in real-world workload compared to the paging based system
presented in [94].

Lim et al. [26, 18] propose a remote memory blade that can be used for memory
capacity expansion to improve performance and for sharing memory across servers.
They extended the Xen hypervisor to emulate a disaggregated memory design where
remote pages are swapped into local memory. Shan et al. [22] rely on the concept of
splitkernels architecture to break the OS functionalities into loosely-coupled monitors
to manage the hardware components. They use a two-level resource management
mechanism to support their disaggregated architecture. The global managers perform
coarse-grained global resource allocation and load balancing, and they can run on
one normal Linux machine, while each monitor works at the lower level, manages a
hardware component, virtualizes and protects its physical resources. They emulate the

3.2 Disaggregated Solutions 27

disaggregated hardware components using commodity servers and assert the advantages
of disaggregation in resource packing, failure isolation, and elasticity.

Peng et al. [10] implement a user-space remote paging library to allow exploration
of applications using disaggregated memory. Their architecture contemplates nodes
with fast but small local memories and large but slow remote memories, and it is
aided by the library, which evicts local pages and fetches remote pages when the local
memory is exhausted. They studied performance characteristics such as access patterns,
local/remote memory ratios, and network connectivity.

Cao et al. [95] present a shared-memory based memory paging service to improve
Virtual Machine (VM) swapping system. Their solution creates a compressed shared
memory swap area between host and VMs, intercepts and redirects the swapping traffic
to this area. They leverage the idle memory present in the host or other VMs on the
host to implement the proposed disaggregated memory system. Buragohain et al. [21]
present a performance emulator for disaggregated memory architectures. It works by
injecting delays to protected portions of the virtual address space of the process under
emulation that correspond to the remote disaggregated memory. The user can specify
the amount of local and remote memory, the interconnect bandwidth, and the remote
access latency, then the delay will be calculated. Their work showed good accuracy
and low overhead in remote memory emulation.
Hardware-level Disaggregation — Pinto et al. [31] present ThymesisFlow, a fully-
functional software-defined disaggregated memory prototype using commercially avail-
able hardware components. The architecture introduces the concepts of a borrower,
which uses the remote memory, and a lender that donates it. Its design leverages
the latest cache-coherent attachment technology for off-chip peripherals to intercept
memory transactions and realize the endpoint functionality. They analyze the impact
of disaggregated memory by measuring the performance of cloud applications and
demonstrating acceptable performance.

The system presented in Guo et al. [96] improve some aspects presented in [22]
by proposing a new co-designed hardware-software for memory disaggregation. Its
architecture includes computing nodes using a user-space library, which is in charge
of handling request ordering, retry, congestion, and incast control of the application’s
memory requests. It also contemplates a memory node device that runs the logic for
all data accesses and handles the metadata and control operations. Bielski et al. [63]
propose for the orchestration of its introduced disaggregated architecture a software
component called Software Defined Memory (SDM) Controller integrated into the
OpenStack framework. It interacts with agents running on the OS of the memory,

3.2 Disaggregated Solutions 28

compute, and accelerator modules. Its task is to receive allocation requests from the
modified OpenStack compute service scheduler, then select and reserve resources with
power awareness. After the selection, a subsequent component called synthesizer will
forward all necessary configurations to all involved devices. Currently, the authors
are evaluating their architectural proposal through simulations. Another approach is
UNIMEM [97], which was developed by the EUROSERVER [16], ExaNoDe [23] and
EuroEXA [64] projects. UNIMEM implements a global physical address space for Arm
architecture accessible by ordinary load–store instructions and RDMA.
Considering Scheduling — In a disaggregated architecture, the coordination of all
the hardware and software falls under the control of the management software [1]. It is
a key component for the distribution of computing power within cluster infrastructures.
Its goal is to satisfy users’ demands for computation and achieve a good performance
in the overall system utilization by efficiently matching requests to resources.

Papaioannou et al. [1] propose a resource scheduling and network management algo-
rithm designed for a disaggregated data center. The scheduler allows the administrator
to define policies, which are enforced through a set of weights. Then taking into account
the weights, the work assumes that each VM request comes with a set of requirements
(cores, ram size, and network bandwidth) that need to be connected, so it does an iter-
ation of filtering, prioritizing and sorting the selected computing and network resources
to take the best decision. The proposed scheduling is evaluated using simulation, which
demonstrated the scheduling algorithm can improve resource utilization compared to
state-of-the-art algorithms and thus reduce energy consumption.

Zervas et al. [8] propose a set of algorithms to allocate and maximize resource
utilization for a disaggregated data center based on the dRedBox architecture. The
algorithms are first fit, best fit, and two network locality based algorithms. To evaluate
the proposal they developed a simulator that performs orchestration and allocation of
resources with reservation of their network bandwidth and interconnection to serve VM
requests. Their simulated results show the importance of network aware algorithms
and resource locality between compute and memory in terms of bandwidth and latency
to maximize resource utilization.

Farias et al. [92] use traces of a representative production system to simulate
a scheduling considering disaggregated architectures. In this work, they focus on
investigating the efficiency gains when the scheduler can create new logical servers or
increase the capacity of those existing, concurrently with the scheduling process. Their
results show that using a disaggregated approach the fragmentation decreases compared
to the server-based architecture, as more important jobs are allocated simultaneously,

3.2 Disaggregated Solutions 29

and power management features may switch off the unused resources to yield substantial
energy savings.
Considering HPC — Although the data center is a dominant target for disaggregation,
we can cite a few works towards HPC applications and environments. Allcock et al. [98]
present an analysis of a system architecture using a dynamically allocatable Random-
Access Memory (RAM) pool over the network. The system consists of an external
memory appliance connected to the clusters’ infiniband switch, as well as a set of
software interfaces to access them through its kernel driver. The authors present four
different use cases, including in situ analysis, machine learning, quantum chemistry
simulations, and virtualization to evaluate the performance of the applications using
this model. They demonstrate that there are applications that take advantage of this
model with an acceptable performance impact.

Uta et al. [99] implement an in-memory distributed file system to manipulate unused
memory and bandwidth of cluster nodes running other applications. In their system,
a set of nodes can be reserved to have its memory capacity augmented using remote
memory. The user can register their nodes as remote memory nodes to a secondary
queue along with the amount of available memory, or the system administrator can
enforce all nodes to be registered as remote nodes. They use scientific workflows, HPC,
and big data applications to evaluate their design, which presents overhead below 10%.

Kommareddy et al. [2] use a simulation model to investigate allocation policies for
disaggregated memory architectures using non-volatile memory. They implemented a
centralized memory management entity on top of Structural Simulation Toolkit (SST)
simulator and evaluate four memory allocation policies designs. In its architecture, the
memory manager and external memory are kept remotely and each node is connected
to them through external links. Since their focus is for HPC systems, their designs are
validated using HPC applications and calculating the performance in terms of IPC.

Kwon et al. [100] propose a memory centric disaggregated system architecture to
execute deep learning algorithms. In their system, the memory nodes are interconnected
to the accelerators through a high-bandwidth and low-latency signaling link within
the accelerator and serve as a transparent memory capacity expansion. They present
three systems interconnect design points that integrate the memory nodes and discuss
their trade-offs in terms of bandwidth utilization and overall performance. Through
simulations, they show better results than a conventional approach and also increasing
in system-wide memory capacity.
Considering Cloud Computing — In order to increase resource utilization, energy,
and operational cost efficiency in data centers, few works address disaggregated re-

3.2 Disaggregated Solutions 30

sources by modifying their virtualized environment or using advanced implementations.
Zhang et al. [101] investigate opportunities to improve memory efficiency on virtualized
systems. They developed a shared memory based system solution that utilizes host
idle memory to improve memory efficiency and VM execution performance for memory
intensive applications. To achieve this objective they implemented an optimization
layer between the host kernel and VM. Its architecture has two components, a coordi-
nator responsible for establishing the shared memory channel between the host and
VMs, and a module responsible for providing dynamic allocation and deallocation of
shared memory based on the workload demands. They also improve their memory
management by developing a shared memory based swap facility and a shared pipes
mechanism to inter-VM communication.

Koh et al. [102] propose a hypervisor that transparently provides scalable memory
for VMs, without requiring modification of the applications or guest OS. Their disag-
gregated system is backed by RDMA-supported high bandwidth networks, in which
multiple connected nodes donate their free memory to VMs. It is possible through
a kernel module linked to the hypervisor that runs on the node requiring memory
extension. Also, a donor application runs in each donor node to grant their memory
through the network. As the disaggregated support is directly integrated into the page
management in the hypervisor, the module handle page faults that occur during the
execution of VM context to provide remote memory access. Their results show that
6% of performance degradation on average compared to the ideal large memory node
can be supported using disaggregated memory.

Garrido et al. [103] extend the hypervisor to share the memory capacity of the
nodes across the computing infrastructure. It leverages the hypervisor Transcendent
memory mechanism that pools the idle or unassigned physical pages of nodes through
a key-value store abstraction. They implement a memory manager that controls the
system and distributes the global memory capacity. It enforces constraints on memory
allocation on the hypervisor as well as the management of physical pages. To evaluate
the solution, the shared global address space was emulated using the node’s local
memory and delays to remote access.

Chen et al. [104] investigate the performance of using an in-memory big data
processing system on disaggregated memory. Their system is based on an in-memory
distributed file system to accommodate the big data processing while increasing the
memory capacity of their data processing cluster with a large volume of DIMM-based
persistent memory. Their solution consists of a client and a storage backend. The client
integrates with the user application through a set of interfaces to perform data and

3.3 Dynamic Memory Provisioning 31

metadata operations on storage. The storage backend is a remote cluster of persistent
memory servers. Empirical results show 3.5× improvements compared to the default
big data framework setup.

3.3 Dynamic Memory Provisioning

Resource allocation/usage — Amaro et al. [94] examine the scenarios in which
remote memory can increase job throughput by presenting a swapping mechanism that
uses remote memory through RDMA. Furthermore, they develop a remote memory-
aware cluster scheduler to split each job’s memory demand between local and remote
memory, therefore increasing the number of jobs running simultaneously. Amaral et
al. [105] develop a dynamic loop-based controller to manage resources and a flow-
network algorithm to determine the optimal placement of workloads on virtualized
data centers. Their approach uses a middleware that intercepts Graphics Processing
Unit (GPU) calls and offloads Application Programming Interface (API) related data
via the network. Li et al. [68] propose a full-stack memory disaggregation design using
a CXL-based approach. The design proposed is composed of a multi-ported external
memory controller directly connected to CPU sockets via CXL. A system software layer
that exposes the pool of memory as a zero-core virtual NUMA node. And a control
plane that relies on predictions of memory latency sensitivity and usage for scheduling
and asynchronous management of the pooled memory. Their simulation show that the
memory capacity of a cloud system can be reduced up to 10%. Michelogiannakis et
al. [35] perform a detailed analysis of sampled metrics in a production HPC system
to quantify what level of disaggregation is appropriated for HPC workloads. They
demonstrate that key resources are consistently underutilized, therefore a resource
reduction would satisfy the worst-case average rack utilization.
Dynamic resource assignment — Koutsovasilis et al. [32] integrate disaggregated
memory into the Linux NUMA memory policy. The developed memory balancing
policy autonomously migrates memory pages across local memory to the disaggregated,
therefore increasing the performance compared to the swap system. In addition, they
introduce a memory orchestration stack that monitors the state of each node and scales
the amount of the attached disaggregated memory according to the current memory
usage of the node. In spite of dealing with disaggregated memory and integrating it
into the Linux memory policies. D’Amico et al. [33] present a dynamic job scheduling
policy integrated into the Slurm resource manager. They implement a variant of
the backfill algorithm to leverage minimizing the system slowdown and co-scheduling

3.3 Dynamic Memory Provisioning 32

malleable jobs with jobs that will execute with a reduced set of resources. Using their
policy they show a considerable decrease in makespan, response time, slowdown, and
energy consumption. Iserte et al. [34, 106] also provide an approach to dynamically
reconfigure the size of a job to improve the system’s throughput and resource utilization.
It enhances the collaboration between OmpSs runtime and the Slurm resource manager
by designing an API to instruct the runtime to communicate with the resource manager
in order to determine the resizing action to execute. Doudali et al. [107] introduce Kleio,
an approach for memory page scheduling in hybrid memory systems. Their approach
leverages machine learning to predict future memory access patterns and dynamically
adapt the page placement policy. It demonstrates significant improvements in memory
access compared to existing solutions.
Accessing/pricing schemes — Cloud computing operates with a different set of
assumptions, compared to HPC facilities, regarding pricing schemes [108]. Access to
large-scale HPC infrastructures usually requires submission of proposals to undergo a
peer-review process describing computational resources as in [109–111]. Their operators
usually charge resource usage based on core-hours [112, 108], cloud service providers
apply an on-demand resource provisioning around the concept of reducing investment
and usually fixed billing models [113–117].

Mazrekaj et al. [113] present an overview of some basic concepts for pricing schemes
and models which varies depending on the cloud service provider. Lu et al. [117]
also present a summary of pricing mechanisms and divide them into auction and
non-auction strategies. Then, they propose an auction approach to efficiently allocate
resources according to the user’s Quality of Service (QoS) preference. They conclude
that QoS based approximate revenue auction can generate more revenue than a fixed-
price strategy. Mahloo et al. [4] compare the cost in terms of capital and operational
expenditures of a disaggregated architecture and one based on traditional servers.
Their framework results show that disaggregation brings high savings in the presence
of heterogeneous workloads.

Borghesi et al. [108] present a model to analyze the impact of frequency scaling on
energy. To assess the cost benefits for the facility and user, they propose four different
pricing schemes and conclude that is possible to save energy while not penalizing
users from the economic point of view. Malla et al. [116] use an embarrassingly
parallel application to provide to HPC cloud users a detailed comparison of cost and
performance between two different cloud paradigms, Function as a Service (FaaS) and
Infrastructure as a Service (IaaS). Their results show that FaaS can cost 14% to 40%
less than IaaS for similar performance.

3.4 Summary of Disaggregated Related Works 33

Ferretti et al. [118] introduce a model to help researches to understand whether is
convenient to use Cloud infrastructures as an alternative to HPC systems for running
scientific applications. Their model takes into account performance, cost, waiting
time, and user preference. They concluded that the best infrastructure may be that
which optimizes the user’s expectations. Breslow et al. [112] present a runtime system
to enable fair pricing for HPC clusters that run co-located applications and a new
pricing model to fairly price applications when co-locations are present. The pricing
model provides the user discounts at a rate proportional to the degradation that each
of their jobs experiences due to contention. While the runtime system uses a cyclic,
fine-grain interference sampling mechanism that for brief periods of execution pauses all
applications but one and measures how the selected application’s performance changes
versus running co-located. This mechanism allows the system to accurately deduce the
interference between the applications and use these measurements to drive fair pricing
for all users’ jobs.

3.4 Summary of Disaggregated Related Works
A common feature shared between the aforementioned related works is that the majority
of the listed works intend to solve the disaggregation problem for the cloud/data-center
domain, which is not the domain of this thesis. Resource management for the cloud
has focused on virtualization techniques to serve applications on a reduced amount
of hardware, therefore reaching economies of scale [119]. Then, their approach for
attaining disaggregation is frequently through the modification of the hypervisor. On
the other hand, HPC systems are designed to maximize the interconnect performance
and run all nodes at peak performance simultaneously. Furthermore, its applications
tend to require a higher amount of computing resources than cloud services [119].

There has been significant evolution in the sophistication of resource management
and scheduling as resources and jobs have become more diverse. A number of schedulers
have been developed over the years to address various supercomputing and parallel data
analysis as well as computer, network, and software architectures [46]. Compared to the
state–of–the–art, to fill the gap between HPC platforms and resource management and
job scheduling solutions for disaggregated architectures, our work provides an analysis
of resource management and job scheduling decisions for disaggregated architectures
considering a popular RJMS used in HPC environments.

In order to reach this objective, we used the Slurm resource manager to adopt
memory as a disaggregated resource for job scheduling. We emphasize the Slurm

3.4 Summary of Disaggregated Related Works 34

resource manager because it is open-source, popular in research, and widely used in
HPC systems, installed on several supercomputers of the TOP500 list. In addition,
it has a general-purpose plugin mechanism that supports a wide range of extensions,
which makes it suitable to analyze scheduling and resource allocation decisions for our
target scenarios. We also employ a simulated environment to evaluate the gains that
can be attained with such deployment at scale.

The study is further enhanced with an analysis of the effects of users’ ability to
estimate their jobs demands and the job’s resource utilization on system performance.
We also discern from previously mentioned works as we are interested in the dynamic
assignment of disaggregated memory to jobs, by dealing with large scale HPC system
and adapting the job to the infrastructure through a resource manager capable of
modifying the allocated memory assigned to the job. We believe it is an important
analysis in a way that helps to understand the dynamics of resource provisioning for
disaggregated systems. The recommendations drawn from the analysis would help to
support procurement decisions when building large HPC systems.

In comparison, it is also worth mentioning the memory disaggregation model archi-
tecture adopted in our work. Previous approaches have employed remote memory access
as an I/O block device, treating it as a swap partition within the system. However,
this approach introduces overheads associated with handling page faults through the
swap mechanism, even when utilizing RDMA for remote I/O operations. Additionally,
previous efforts relying on software based remote memory access require significant
customization of core system components and the development of custom software, de-
manding application redesign to access the infrastructure through specifically developed
libraries. In contrast, our adopted model architecture utilizes load/store semantics to
seamlessly expose disaggregated remote memory as byte-addressable and mapped to a
NUMA node. This approach enables applications to leverage the extended memory
capacity without requiring further modifications or the need for custom middleware in
the system.

This page is intentionally left blank.

Se avexe não
Toda caminhada começa no primeiro passo

Jose Accioly

Part II:

Modelling Contention-Aware
Performance Prediction
Technique

36

CHAPTER 4

Slowdown Based Method

This part dives into the topic of a generic approach to predict performance degrada-
tion due to sharing of resources. The emerging proposal of a novel disaggregated

memory architecture to allow a flexible and fine–grained allocation of memory capacity
to compute nodes shifts the focus to sharing capacity, rather than coherent sharing of
data as in the traditional shared memory processors. In this context, jobs request a
number of CPU cores and a given memory capacity per core, and memory capacity is
then allocated as a common resource. Since applications running on different nodes can
share memory devices and interfaces, performance may be affected by contention [22].
For this reason, co-scheduling and resource allocation decisions for disaggregated mem-
ory require contention awareness in order to optimize application performance and
overall system throughput. In our work, a proper contention model is an important
step, as we need a reliable way of assessing the penalty the applications suffer when
sharing remote memory in our simulated environment.

We organize the Chapter by first detailing the hardware used to run our experiments
and listing the set of single and multi node applications we profiled to create the
contention model in Section 4.1. The hardware detailed in Section 4.1 is also used
to run all simulations for our disaggregated environment. The profile collected from
all applications will be applied to the evaluation of our implemented disaggregated
approaches and to create the input data. In Section 4.2, we describe the concept of
the disaggregated approach employed in this work. In the following Section 4.3, we
detail the methodology applied in this work to achieve the proposed contention model.
And finally, the results of the developed model are presented in Sections 4.4 and 4.5.
The content in this Chapter can be found in our papers [39, 40].

4.1 Environment Setup 38

4.1 Environment Setup

Hardware resource — We carried out the experiments on BSC Nord III supercom-
puter which has 756 compute nodes equipped with two Intel Xeon SandyBridge-EP
E5-2670 that together comprise 16 cores operating at 2.6 GHz. Each socket has 20 MB
L3 cache LLC shared among all cores, single memory controller, and two Quick Path
Interconnect (QPI) links version 1.1 operating at 8.0/Gs. It implements the home
snoop cache coherence with Modified, Exclusive, Shared, Invalid and Forward (MESIF)
protocol [120]. The node has 64 GB of Double Data Rate type three (DDR3)-1600
DIMMs, theoretical bandwidth of 51 GB/s (37 GB/s sustained) for local access and
38 GB/s (20 GB/s sustained) for remote memory access. The socket memory access
latency is 81 ns and 133 ns for local and remote accesses respectively [121].
Benchmarks — We used nine distributed applications from several known benchmark
suites. For the simulation, we incorporated the detailed profile from a total of 44 single-
node applications from PARSEC (8 applications) [122], Rodinia (5) [123], NAS Parallel
Benchmarks (NPB) (8) [124], Splash (5) [125] and another 15 diverse publicly available
applications. We selected applications to cover a variety of computational patterns
found in multithreaded and high performance codes. The single node applications were
compiled with GNU/Linux GNU Compiler Collection (GCC) 7.2 and multithreading
enabled, while the distributed applications were compiled using OpenMPI 1.8.1. We
used numactl [126] to apply affinity settings for both threads and memory placement
and the Perf [127] tool to collect the performance counters.

4.2 Problem Definition: Global Memory Emulation
Since the concept of remote memory decoupled from the processor is not easy to
implement in real prototypes and due to the absence of an available prototype [21], we
emulate a disaggregated shared memory architecture (following the concept presented
in Section 2.2), without the need for real hardware, using a conventional multi-socket
server. This approach takes advantage of a two-socket server and its separated LLC to
create pressure only in the desired shared resource, i.e. memory bandwidth. According
to Molka et al. [121], cache coherence traffic is not a significant bottleneck in a two-
socket system. Thus, in our approach, the processor and cache resources are isolated
from interference while the effects of memory bandwidth contention can be observed on
the shared memory resource. In addition, the latency of the cross-socket memory access

4.2 Problem Definition: Global Memory Emulation 39

for our experimental platform detailed in Section 4.1, is similar to those presented in
disaggregated works such as [8, 9, 69].

Consequently, from a software perspective, in our emulation the memory appears to
the remote compute node as a CPU-less NUMA node where its memory characteristics
are independent of the memory directly attached to it [69]. However, the access is
subject of contention as multiple compute units can share the same memory resource.
Emulating Disaggregated Memory Single Node — To mimic a disaggregated
shared memory architecture for a single node application, the approach developed
in this work applies the scheme depicted in Figure 4.1. As shown in the Figure, all
threads of the interfering application (B) execute on the socket 2 while issuing memory
requests exclusively to the memory bank attached to socket 1 (remote access). On
the other hand, all threads of the target application (A) use only its memory bank
(local access), thus contending for the memory controller and memory bandwidth.
Applying this scheme, the impact of application B on application A can be modeled
based on B’s bandwidth interference. This model predicts the slowdown experienced
by application A in the face of diverse remote bandwidth demands.

Socket 1 Socket 2

Memory 1 Memory 2

Hardware Configuration

Application A Application B

Figure 4.1 Emulated disaggregated scenario applied in this work.

Emulating Disaggregated Memory Multi Node — To mimic a disaggregated
shared memory architecture for a multi node application, we extended the previously
detailed scheme and depicted its flow in Figure 4.2. All threads/processes of an
interfering application (B/C) execute completely on the socket 2 in each node while
issuing memory requests exclusively to the memory bank attached to socket 1 (remote
access) on the same node. On the other hand, all threads/processes of a target
application (A) use only its memory bank (local access), thus contending for the
memory controller and memory bandwidth. Thus, the impact of application B and/or C
on application A can be modeled based on the overall bandwidth interference. For

4.3 Slowdown Method 40

distributed applications running across different nodes, the main difference compared
with the single node scenario is that a target application issues memory requests to
the local memory bank on every node, while other applications may cause interference
by issuing remote memory requests given by a particular contentiousness level and the
number of nodes. In this scenario, our model can predict the slowdown experienced by
a given target application in the face of diverse remote bandwidth demands.

Socket 1 Socket 2

Memory 1

Hardware Configuration

Memory 2

Application A
Rank N

Application C
Rank N

Socket 1 Socket 2

Memory 1

Hardware Configuration

Memory 2

Application A
Rank 2

Application B
Rank 2

Socket 1 Socket 2

Memory 1

Hardware Configuration

Memory 2

Application B
Rank 1

Application A
Rank 1

Figure 4.2 Emulated multi node disaggregated scenario.

4.3 Slowdown Method
The most straightforward way to approach the problem of characterizing the perfor-
mance degradation of an application in contention is to perform a brute-force sweep.
According to De Blanche et al. [79], from all methods to characterize the performance
degradation of an application in contention the brute-force method is the most precise.
However, due to the 𝒪(𝑁2) cost, it is not possible to be employed in a production
environment. A suitable alternative is to apply a method that analyzes each program
once and scales linearly with the number of applications. Prior works [28, 79, 27, 80, 29]
predicted performance degradation when two applications run together using the con-
cepts of sensitivity and contentiousness. Their goal is to predict, for any pair of
applications, the slowdown that results from contention in the memory subsystem,
without the need to run all combinations of applications against each other.

These Slowdown based methods are decoupled into two steps: (1) to measure the
sensitivity curve, which quantifies the impact of different levels of shared resource
contention on the application’s performance; (2) to measure the contentiousness value,

4.3 Slowdown Method 41

which quantifies how much shared resource contention is generated by the application.
Then, to predict the application’s performance the contention is applied to the sensitivity
curve. In both cases, pressure may be quantified in various ways, for example, in
terms of cache capacity and/or memory bandwidth. Slowdown based methods have
been successful for single node coscheduling [27–29], but they have not been applied to
disaggregated memory.

In this regard, we must take special care when using the Slowdown models. Since
in our envisaged disaggregated scenario (Figure 2.7 and Section 4.2), the applications
do not share cache capacity, the contentiousness must be solely by using memory
bandwidth. In this sense, our Slowdown based method for disaggregated memory creates
a family of sensitivity curves to relate computing demands for memory bandwidth to
application degradation. These sensitivity curves are built using a carefully curated
set of performance counters that correlate well with the memory bandwidth of the
application. Since HPC applications are generally batch applications (rather than
interactive services), performance is inversely proportional to runtime, which for a
given application is itself proportional to memory bandwidth.

4.3.1 Single Node Approach

Figure 4.3 shows a high-level view of our Slowdown methodology for a single node,
which is comprised of three components:
1 Interference phase — In the interference phase, a set of interfering applications

execute concurrently with the target Application A, using only the remote bandwidth as
the measure of pressure. The interfering applications differ as they account for different
read/write ratios to create a family of distinct sensitivity curves (see Section 4.3.1.1).
In the disaggregated memory architecture model, remote memory accesses do not
create cache contention in the local node as their cache hierarchies are separate (see
Figure 2.7). Contention induced by cache capacity can misrepresent the degradation
experienced by the applications in such a scenario, so the metric of interest is bandwidth
usage and contention on the memory controller.
2 Bandwidth calculator — The bandwidth calculator is responsible for collecting

hardware counters to calculate Application B’s remote bandwidth (𝑏𝑤𝑏) and its
read/write ratio (𝑅/𝑊 Ratio). The calculated values will be used to select the
appropriate target’s sensitivity curve to predict the performance degradation (see
Section 4.3.1.2).
3 Prediction methodology — In the prediction methodology, we start by selecting

4.3 Slowdown Method 42

application A’s sensitivity curve taking into account Application’s B read/write ratio.
Then, to mitigate the measurement noise from the benchmark process and improve the
prediction accuracy, a smoothing function is applied to the sensitivity curve. Linear
and polynomial smoothing functions are considered, as they are straightforward and
commonly employed. This gives the function (𝑓𝑎) that relates Application A’s slowdown
to the total interfering remote bandwidth. Finally, the Application’s B bandwidth
(𝑏𝑤𝑏) is applied to the function to predict Application A’s performance (𝑦) when
Application B contends for remote memory bandwidth (see Section 4.3.1.3). The
prediction methodology has 𝒪(𝑐𝑁) complexity (𝑁 as the number of applications
and 𝑐 the number of distinct read/write ratios), as it requires the application to be
characterized only once instead of every pairwise execution that would be required in
a brute force characterization scenario.

y = fa(bwb)

Input for pair (a,b)

Smooth Curve

Socket 1 Socket 2

Memory 1 Memory 2

Hardware Configuration

Application B

BWapp B

Hardware
Counters

Interference
Socket 1 Socket 2

Memory 1

Application
A

Interference

Hardware Configuration

Performance
Appa

Output

App Z
App Z

App Z
App A

Read/Write
Ratio

R/W Ratio app B

1

2

3

Figure 4.3 High-level view of the Slowdown methodology.

The proposed Slowdown method differs from previous works [29, 28] as the first
work can only estimate the performance of a number of identical applications (with
the same input data). Besides, the work carried out in [28] does not estimate the
performance for remote memory interference and it uses a static read/write ratio
interference. As can be seen in the Figure 4.3, our approach relies on three distinct
aspects, which diverge from the initial common approach.

The first aspect is the interfering application executing concurrently and using only
the remote bandwidth as the measure of pressure. The interfering applications differ

4.3 Slowdown Method 43

as they account for different read/write ratios to create a family of distinct sensitivity
curves for each target application. In the upcoming global shared memory address
architectures, remote memory access does not create cache contention in the local node
as their cache hierarchy will be separate. Contention induced by cache capacity can
misrepresent the degradation experienced by the applications in such a scenario, so
the metric of interest is bandwidth usage and contention on the memory controller.

The second aspect is using a suitable hardware counter to correctly calculate the
application’s remote bandwidth and its read/write ratio to select the appropriate curve
to predict the degradation. And the third aspect is smoothing the curve points by
applying a linear function for better accuracy. Furthermore, the approach maintains
the 𝒪(𝑐𝑁) complexity (𝑁 as the number of applications and 𝑐 the number of distinct
read/write ratios) as it requires the application to be characterized only once instead
of every pairwise execution that would be required in a brute force characterization
scenario. The problem is modeled in such a way because in the adopted architecture
and for recent disaggregated memory models (see Section 2.2) accessing remote memory
does not create cache contention in the local node, so the metric of interest is bandwidth
and contention on the memory controller.

4.3.1.1 Creating Sensitivity Curves

To create the sensitivity curves, we quantify the memory pressure using the total
remote bandwidth rate and calculate the performance degradation the application
suffers when executing with an interfering application. For this purpose, we use
a synthetic benchmark, which is an adaptation of the STREAM benchmark [128],
modified to generate a variable requested bandwidth for the remote memory. Then, we
create a curve of the target application’s performance, normalized to its performance
running alone, on the 𝑦-axis, versus the remote bandwidth generated by the modified
STREAM benchmark (interfering application), on the 𝑥-axis. An example of the
sensitivity curve for the Triad workload from the STREAM benchmark is presented in
Figure 4.4.

Radulovic et al. [129] argue that the total bandwidth is misleading because it
combines into a single metric the aggregate bandwidth of reads and writes, even though
they are fundamentally different operations. Distinguishing read and write bandwidths
when creating the sensitivity curve not only accounts for the particularities of the
memory subsystem but also more accurately represents the behavior of real applications.
Variable read/write ratios are supported by the synthetic interfering benchmark [130].

4.3 Slowdown Method 44

0.75

0.80

0.85

0.90

0.95

1.00

0 5 10 15
Interfering app remote memory bandwidth [GB/s]

Ta
rg

et
 a

pp
 p

er
fo

rm
an

ce
 (n

or
m

.)

Figure 4.4 Sensitivity curve for Triad workload.

We applied the Slowdown based methodology by creating a family of sensitivity
curves that depend on the interfering application’s remote memory bandwidth and
read/write ratio. Previous works rely on one single sensitivity curve, however in
Figure 4.5 we show the measured sensitivity curves for the Triad workload on our
experimental platform (more detail in Section 4.1) while the proportion of reads varies
between 50% and 100%. In all our experiments, curves created using a higher percentage
of reads generally achieved a higher sustainable bandwidth. As pointed out in [129],
writes have additional delays caused by the write recovery time, which is the delay
between a write and the next precharge command, and the write–to–read delay time,
which is the interval between a memory write and the consecutive read. Increasing
the proportion of write requests, therefore, reduces the sustainable bandwidth and
increases the effective (loaded) latency [129].

An important aspect when creating a sensitivity curve is the representation of pres-
sure in its 𝑥-axis. When executing the synthetic interfering benchmark and the target
application concurrently, both applications will interfere with each other. Intuitively,
the reported interfering bandwidth will be lower than the expected bandwidth of its
execution alone.

In our methodology, we use all curves to display the results in Sections 4.4 and 4.5
with the 𝑥-axis representing the bandwidth that the interfering application would
have had if it were executing alone instead of under contention. This is similar to the
Figure 4.5. We chose this methodology because it is generic to any interference study,

4.3 Slowdown Method 45

and it is appropriate for the scenario where the known value is the actual bandwidth
usage that the interference application applies.

0.8

0.9

1.0

0 5 10 15 20
Interfering app remote memory bandwidth [GB/s]

Ta
rg

et
 a

pp
 p

er
fo

rm
an

ce
 (n

or
m

.)

50% RD 60% RD 70% RD 80% RD 90% RD 100% RD

Figure 4.5 Family of sensitivity curves for Triad workload. Each line corresponds to
a specific read/write ratio going from 50% Read to 100% Read, with the lighter lines
indicating a higher percentage of read.

4.3.1.2 Measuring Contentiousness

In the second part, we characterize the application in terms of how much remote
bandwidth it requires throughout its execution by running it solo. The value of remote
memory bandwidth will be applied as the contention pressure. For this step, we use
performance counters to measure the read and write bandwidths.

Memory bandwidth is typically measured using one of the three approaches: (a)
LLC miss [84, 131], (b) Off-core response [132] and (c) uncore Integrated Memory
Controller (IMC) counters [133]. While the LLC miss counter accounts for neither the
prefetcher read memory traffic nor write memory traffic, off-core response counters
cannot detect write memory traffic due to cache line evictions, which is the major
portion of the overall write traffic.

The uncore IMC counters, on the other hand, measure events in the memory
controller, including read and write Column Access Strobe (CAS) commands [120].
These commands are sent from the memory controller to the Dynamic Random-Access
Memory (DRAM) at every memory column access and they include prefetching and
eviction events. Each memory access consists of a cache line of 64 B. As the counter
measures memory traffic at the memory channel, only the total read/write traffic per

4.3 Slowdown Method 46

channel is measured, which prevents further segmentation of requests. Its broad range
makes it suitable to compute application bandwidth with higher accuracy than LLC
misses, providing a complete bandwidth profile. Following the measurements, the
per-channel read and write application bandwidths are:

𝐵𝑊read = 𝐶𝐴𝑆_𝐶𝑂𝑈𝑁𝑇read × 64 B/𝑒𝑙𝑎𝑝𝑠𝑒𝑑_𝑡𝑖𝑚𝑒

𝐵𝑊write = 𝐶𝐴𝑆_𝐶𝑂𝑈𝑁𝑇write × 64 B/𝑒𝑙𝑎𝑝𝑠𝑒𝑑_𝑡𝑖𝑚𝑒
(4.1)

and the total bandwidth is, therefore:

𝐵𝑊tot = 𝐵𝑊read + 𝐵𝑊write (4.2)

4.3.1.3 Prediction Methodology

The penultimate step in predicting the application’s performance is to calculate the
read/write ratio of the interfering application. It is done by dividing Equation 4.2 by
𝐵𝑊read to obtain the percentage of memory operations that are reads. As the last step,
we select the target application’s sensitivity curve corresponding to the read/write ratio
of the interfering application. The selected curve is smoothed using a linear function
so as to predict the degradation in the case of missing points with higher accuracy and
also to decrease the influence of outliers in the collected data. Finally, we apply the
interfering remote memory bandwidth to the target interference curve to obtain the
expected target performance when running under interference.

4.3.2 Multi Node Approach

Our multi node contention model is an extension of the single node model presented
in Section 4.3.1. It was extended to support contention among applications that use
multiple nodes. The overall approach is shown in Figure 4.6 and the model input and
output are given in Table 4.1.
Sensitivity Curves — In common with all Slowdown based models, the single node
model quantifies application performance using a sensitivity curve, which measures
performance on the 𝑦-axis, normalized to the performance running alone, as a function
of the contentiousness of the other application(s) on the 𝑥-axis. Contentiousness is a
single variable, which for a single node is the total memory bandwidth. In our model
of disaggregated memories, remote memory accesses do not create cache contention in
the local node as their cache hierarchies are separate. Then, moving from single to

4.3 Slowdown Method 47

multi node greatly increases the complexity, because, in the multi node case, there is
a separate interfering memory bandwidth per node, which is impractical to model in
detail.

Memory 2

Socket 1 Socket 2

Memory 1

Application [B|C|D]
Rank N

Hardware Configuration

Memory 2

Socket 1 Socket 2

Memory 1

Application [B|C|D]
Rank 1

Hardware Configuration

y = fa(max(bwb,
 bwc, bwd))

Input for group (a,[b|c|d])

Smooth Curve

Socket 1 Socket 2

Memory 1

Hardware Configuration

Application [B|C|D]
Rank 0

BWapp [B|C|D]

Hardware
Counters

Interference

Performance
Appa

Output

App Z
App Z

App Z
App A

Read/Write
Ratio

R/W Ratio app[B|C|D]
Number of Nodes
 app[B|C|D]

1

2

3

Memory 2

Socket 1 Socket 2

Memory 1

Application A
Rank N

Hardware Configuration

Memory 2

Socket 1 Socket 2

Memory 1

Application A
Rank 1

Hardware Configuration

Memory 2

Socket 1 Socket 2

Memory 1

Application A
Rank 0

Interference

Hardware Configuration

Interference

Interference

Figure 4.6 Multi node Slowdown methodology.

Table 4.1 Contention model inputs and output

Value Description
Application inputs:

𝑓 (𝑏𝑤, 𝑁) Slowdown curve: normalized performance as a function of interfering bandwidth and number of nodes
R/W Ratio Percentage of memory operations that are reads

𝑏𝑤app Total memory bandwidth (bytes/s)
Execution inputs:

𝑏𝑤 Interfering bandwidth
𝑁 Number of interfering applications

Output:
𝑃est Estimated normalized performance, typically 0 ≤ 𝑃est ≤ 1

Most HPC applications have similar behavior on each node, and overall perfor-
mance is constrained by the slowest node. For this reason, it is reasonable to set the
contentiousness to be the largest, i.e. worst interfering bandwidth across all nodes.
However, we found that the actual level of memory bandwidth interference is subject to
a reasonable amount of noise, and performance degrades as the number of interfering
nodes is increased (see Figure 4.7). We, therefore, count the number of nodes that

4.3 Slowdown Method 48

have interference close to the maximum across all nodes and use a family of sensitivity
curves indexed by this number of nodes.

0.75

0.80

0.85

0.90

0.95

1.00

0 5 10 15 20
Interfering app remote memory bandwidth [GB/s]

Ta
rg

et
 a

pp
 p

er
fo

rm
an

ce
 (n

or
m

.)

Read ratio (%) 50 100 Interfering nodes 1 8 12 16

Figure 4.7 Distinct sensitivity curves for stream benchmark.

This introduces a parameter, which is the tolerance within which a node’s estimated
interference is counted as being close to the maximum. We explore the effect of this
parameter in Figure 4.8, which shows the prediction error as a function of this tolerance,
with “single node” meaning that the highest interference is assumed to affect a single
node. In contrast, the 0% threshold considers all nodes that have the exact same
numerical interference value as the highest interfering bandwidth. On the other hand,
the range from 25% to 100% includes only nodes whose interfering bandwidth falls
within that percentage range compared to the maximum interfering bandwidth.. We
see that there is a large improvement moving from the single node case, across all
benchmarks, but the precise value of the tolerance parameter was not significant in our
experiments. There are two likely reasons for this behavior. Firstly, since estimated
interference is calculated from the model rather than measured on a system, all nodes
that share the memory with processes of the same applications will see precisely the
same estimated interference, and no tolerance is needed for random noise. Secondly,
the impact of contention on performance stabilises quite quickly with the number of
nodes experiencing a similar level of contention, so precisely determining this number
is generally not critical. We, therefore, choose a moderate tolerance of 25% for the rest
of the experiments.

To extend the contention model, we first execute the synthetic benchmark [130]
to create the sensitivity curve in parallel across a configurable number of interfering

4.3 Slowdown Method 49

nodes (Step 1 of Figure 4.6). Then, we measure the sensitivity curve for 50% reads
and 100% reads and use linear interpolation for intermediate read/write ratios. The
single node model has shown that linear interpolation exhibits better performance than
additional interfering data points (see Section 4.4.4) and that the accuracy is similar
to polynomial interpolation. Following a similar concept, so as to decrease the cost
of collecting the sensitivity curve data, the number of interfering nodes was sampled
between 1 and the maximum target number of nodes.

0
5

10
15
20

am
g

bt-
mz

hp
ccg

minif
e

sp
-m

z

str
clu

ste
r

str
ea

m

M
ax

 p
re

di
ct

io
n

er
ro

r (
%

)

Single node 0% 25% 50% 75% 100%

Figure 4.8 Maximum prediction error for multi node applications running on 31 nodes.

Contentiousness — In the second part, the contentiousness of an application , 𝑏𝑤𝑎𝑝𝑝,
is collected using performance counters when running alone (Step 2). We calculate
the read and write memory bandwidths using the numbers of read and write CAS
commands [120], averaged over all nodes on which the application is executed.
Predict Methodology — In the last part (Step 3), the model predicts the perfor-
mance of an application “A” using its interpolated sensitivity curve, 𝑓𝑎, based on the
read/write percentage, number of interfering nodes, and the largest contentiousness,
𝑚𝑎𝑥(𝑏𝑤𝑎 , 𝑏𝑤𝑏 , 𝑏𝑤𝑐), among the interfering applications.

4.3.3 Key Differences Compared with State-of-the-art and
Sources of Error or Simplification

Our work is differentiated from prior work [27–29], and provides improvements for
a singular reason: Our approach targets performance prediction due to sharing of
disaggregated memory, while the prior works use application working set size or local

4.3 Slowdown Method 50

bandwidth as their measure of pressure to create the sensitivity curve. As noted in
Section 4.3, the cache contention characterization method is misleading for predicting
the performance of applications using separated cache hierarchies. For this reason, we
proposed using a family of smoothed sensitivity curves to account for varying ratios
of read and write memory accesses to increase accuracy and decrease the effect of
outliers. Beyond that, our model deals with shared memory contention for multi node
applications.

We can list two main sources of simplification in our model. The first one is that
we model contention and remote access penalty using a fixed latency, which is a result
of our disaggregated emulation approach. We are aware that the applications may
be affected by distinct latencies accessing remote memory, therefore in Chapter 6 we
discuss the effect of this assumption in our results. The other drawback of our approach
is that it does not model contention in shared network access when multiple applications
are communication intensive. We prioritize the memory access contention model to
address the most critical problem since memory access is one of the main sources of
contention. Furthermore, aggregating multiple sources would increase the complexity
of the simulation, making simulation more complex and slower. Nevertheless, the
model can be extended to account for networking, multiple latencies, or any other
source of contention to improve the simulation.

4.4 Experimental Evaluation Single Node 51

4.4 Experimental Evaluation Single Node
For this Section, the resources used to evaluate the accuracy of the proposed approach
were presented in Section 4.1 and the simulated global shared memory architecture
using a conventional node in Section 4.2. We normalize our results against a brute-force
sweep performed on the pair of applications as demonstrated in [79].

4.4.1 Performance Counters

To compare the accuracy for representing the bandwidth of an application, we collected
the performance counters listed in Section 4.3.1.2 during the execution of the Triad
workload. Performance counters can track the occurrence of events with negligible
overhead, and there are commonly employed in many related works [91, 84, 134] to
measure resource utilization and demonstrate the effectiveness of any proposed method.
Figure 4.9 summarizes the calculated bandwidth derived from the collected performance
counters. In the Figure, the dark columns represent the bandwidth for the read traffic
while the light columns represent write traffic. As can be seen, cache miss counter
represents only a fraction of the sustainable memory bandwidth (5 GB/s), confirming
that not only write traffic but part of the read traffic is neglected by this performance
counter. The off-core response counter displays a bandwidth of about 27 GB/s which is
roughly equal to the read traffic calculated using CAS counter. However, the difference
between both counters emerges in the write traffic captured by the latter, which differs
by 30% of the overall bandwidth.

0

10

20

29

Cache
Miss

Offcore
Response

CAS

M
e
m

o
ry

 b
a
n
d
w

id
th

 [
G

B
/s

]

Read Write

Figure 4.9 Calculated memory bandwidth for Triad workload using three different
hardware performance counters.

4.4 Experimental Evaluation Single Node 52

The bandwidth calculated by Triad during the tests was 30 GB/s on average.
According to McCalpin [135], the bandwidth values assumed by the Triad workload
is based on the minimum data traffic that each iteration will perform. For the Triad
workload, this number is 24 B (two floats read and one float write), however, it does
not account for bytes transferred during write-allocate operations. As the Triad kernel
requires 4/3 as much bandwidth as the benchmark generates when write-allocate
is included, the result must be multiplied by a factor of 1.33. After applying the
correction factor, the sustainable bandwidth is approximate 39 GB/s. The total
bandwidth calculated for Triad workload using CAS counter deviates by only about 5%
of the scaled bandwidth, which confirms its accuracy to be sufficient for the proposed
methodology.

4.4.2 Application Characteristics

Figure 4.10 and 4.11 present the characteristics of bandwidth usage for each application
considered in our experiments. The applications used in this study show a wide range
of memory bandwidth utilization. At least 40% of the applications use 20% or more
of the sustainable bandwidth. The sustainable bandwidth for this work is calculated
using the highest value achieved among 5 executions.

0%

25%

50%

75%

100%

e
p

s
w

a
p
ti
o
n
s

m
a
n
d
e
l

k
m

e
a
n
s

b
o

d
y
tr

a
c
k

la
va

M
D

p
a

rt
ic

le
fi
lt
e
r

q
s
o
rt

h
o
p

ra
y
tr

a
c
e

s
p
a
rs

e
L
U

h
y
d
ro

b
la

c
k
s
c
h
o
le

s
w

a
te

rs
p

a
ti
a
l

b
t−

m
z
.A

.1
fr

e
q

m
in

e
b

a
rn

e
s

b
t−

m
z
.B

.1
x
s
p
e
c
fe

m
3
D

w
a
te

rn
s
q

u
a
re

d
fe

rr
e
t

ff
t

S
S

C
A

fm
m

c
fd

fl
u
id

a
n
im

a
te

lu
le

s
h

a
m

g
2
0

1
3

fa
c
e
s
im

p
rk

2 ft
lu

d
s
tr

e
a
m

c
lu

s
te

r
c
g

H
P

C
C

G u
a

h
e
a
t

m
in

iF
E

s
v
m

rf
e lu s
p

o
c
e
a
n

s
tr

e
a
m

tr
ia

d

P
e

rc
e

n
ta

g
e

 o
f

s
u

s
ta

in
a

b
le

 b
a

n
d

w
id

th

Figure 4.10 Percentage of sustained memory bandwidth utilization for each application
in our study. Memory bandwidth usage is calculated using CAS performance counter.

4.4 Experimental Evaluation Single Node 53

Figure 4.11 shows that the benchmark suite covers a wide range of read/write
memory traffic, with reads accounting for between 50% and 100%. The Figure also
shows that the family of curves (see Figure 4.5) corresponds to the range that arises in
practice.

0%

25%

50%

75%

100%

e
p

s
w

a
p
ti
o
n
s

m
a
n
d
e
l

k
m

e
a
n
s

b
o
d
y
tr

a
c
k

la
va

M
D

p
a
rt

ic
le

fi
lt
e
r

q
s
o
rt

h
o
p

ra
y
tr

a
c
e

s
p
a
rs

e
L
U

h
y
d
ro

b
la

c
k
s
c
h
o
le

s
w

a
te

rs
p
a
ti
a
l

b
t−

m
z
.A

.1
fr

e
q
m

in
e

b
a
rn

e
s

b
t−

m
z
.B

.1
x
s
p
e
c
fe

m
3
D

w
a
te

rn
s
q
u
a
re

d
fe

rr
e
t

ff
t

S
S

C
A

fm
m

c
fd

fl
u
id

a
n
im

a
te

lu
le

s
h

a
m

g
2
0
1
3

fa
c
e
s
im

p
rk

2 ft
lu

d
s
tr

e
a
m

c
lu

s
te

r
c
g

H
P

C
C

G u
a

h
e
a
t

m
in

iF
E

s
v
m

rf
e lu s
p

o
c
e
a
n

s
tr

e
a
m

tr
ia

dP
e

rc
e

n
ta

g
e

 o
f

re
a

d
 a

n
d

 w
ri

te

Write Read

Figure 4.11 Percentage of read/write ratio for each application considering their
sustained bandwidth utilization.

4.4.3 Sensitivity Curves

For our tests, the interfering application generates the sensitivity curve for remote
memory bandwidth traffic between 10% and the maximum sustainable bandwidth
achieved in the node. We then apply a linear function to smooth the curve before pre-
dicting the application’s performance. We tried different smoothing functions, and the
linear function attained satisfactory results. As applications with low bandwidth usage
do not present a high drop in performance under remote memory access interference, in
Figure 4.12 we only present those applications with a significant drop in performance
using the data recorded during the interfering benchmark without any transformations.
The sensitivity curves for all applications can be found in Appendix A, Figure 1.1.

4.4 Experimental Evaluation Single Node 54

As represented in previous figures, lighter lines imply a higher read percentage. Due
to high memory bandwidth usage, in Figure 4.12 we notice that the applications are
highly affected by remote interference. The Figure also shows the raw data recorded
during the interfering benchmark. We can observe the presence of noise in the results
for some applications (e.g., lu, sp, and heat).

svmrfe lu sp ocean stream triad

HPCCG cg lud ua miniFE heat

amg2013 lulesh facesim streamcluster prk2 ft

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

Interfering app remote memory bandwidth [GB/s]

Ta
rg

et
 a

pp
 p

er
fo

rm
an

ce
 (n

or
m

.)

Figure 4.12 Sensitivity curve for applications with high bandwidth usage. Each line
corresponds to a specific read/write ratio going from 50% Read to 100% Read, with
the lighter lines indicating a higher percentage of read.

When applying pressure equal to the maximum sustainable remote bandwidth,
we noticed that the performance of the applications suffers considerable levels of
degradation in the face of an interfering application issuing memory requests from a
remote node. This indicates that the resource allocation for new architectures using
global memory addresses must account for the degradation of applications executing
concurrently and sharing the memory subsystem. The requirement and effectiveness
of the interfering application are endorsed, as increasing the amount of interference
causes a decrease in the target application’s performance. However, applications are

4.4 Experimental Evaluation Single Node 55

not affected in the same amount, even though lud and ft have similar bandwidth
requirements (see Figure 4.10), the former is penalized more than the latter, the same
happens to HPCCG and ua. This behavior highlights that some applications are also
even more penalized for high latency when handling remote memory requests from the
interfering application.

Also as presented in the Figure 4.5, we can notice the difference in the performance
when the read/write ratio of the interference application varies. Increasing read ratio,
less interference the benchmark causes to the target application, then more sustainable
remote bandwidth is used by the remote application. This pattern is emphasized with
high remote memory access when we can clearly see the separation between curves.

4.4.4 Prediction Error

We evaluate the effectiveness of our contention model by predicting the expected
performance degradation of the applications in a pairwise fashion. We consider the
prediction error to be the absolute value of the difference between the predicted
performance and the real normalized application performance under contention. The
methodology applied in our tests is the following: we start both target and interfering
applications at the same time on different sockets. We restart the interfering application
whenever it finishes keeping the target application in contention during its entire
execution. All pairwise combinations were executed in such a way that the target
application completed at least 10×. We recorded the actual performance degradation
(increasing in runtime) when the applications executed together, in order to compare
with the predicted performance. Degradation for the target application is calculated
using its normalized performance alone in the system without interference and its
performance under contention.

Table 4.2 summarizes the predicted error for all applications using two different
functions to smooth the interference curve. The smoothing functions applied to
create the curves are linear and polynomial functions with degree two. It also shows
the prediction error using the smoothed specific curve for the interfering application
read/write ratio (called right curve) and the smoothed sensitivity curves produced with
the static values of 50%, 75% and 100% read/write ratio. The column Cost indicates
the profiling cost needed by the method. It is compared to the methodology applied
by previous works that rely only on 4 different levels of pressure (listed 25%, 50%,
75% and 100% contentiousness) and a static read/write ratio to create their sensitivity
curve.

4.4 Experimental Evaluation Single Node 56

Table 4.2 Prediction error for linear and polynomial smoothing

Method % of Mean SD Max Cost
Reads (%) (%) (×)

Polynomial

right curve 1.15 1.49 14.5 44
50 1.29 1.86 20.6 4
75 1.34 1.86 17.7 4

100 1.39 2.20 21.0 4

Linear

right curve 1.19 1.59 14.0 44
50 1.27 1.86 22.1 4
75 1.38 1.94 18.9 4

100 1.49 2.32 19.5 4

We achieve the lowest mean and variance prediction errors using the curve cor-
responding to the actual read/write ratio of the interfering application. In the best
case, the right curve using polynomial smoothing attains a mean error of 1.15%, and
a relative improvement of 18% compared with predictions using a static read/write
ratio. In addition, it also has the lowest worst case with around 14% max error and
relative improvement between 19% and 31%. The linear smoothing method achieves a
mean error of 1.19%, which is similar to the polynomial smoothing results, and relative
improvements between 26% and 37% for the worst case. Figure 4.13 presents the
distribution of prediction error using polynomial smooth function (best result so far).

0%

5%

10%

15%

20%

Er
ro

r

Right Curve 50% RD 75% RD 100% RD

Figure 4.13 Distribution of error using polynomial smoothing function.

4.4 Experimental Evaluation Single Node 57

In the Figure , we can note that the density of the prediction error using the correct
read/write ratio is more concentrated in the base of our chart and the majority of the
values is below 5%. Using static curves we note predictions with high variance and the
presence of a longer tail, denoting the occurrence of higher values for errors. Using
fixed read/write ratio curves the max error is higher than 15%, however, the max error
using the right curve is lower. The results confirm that the read/write ratio plays an
important role to predict performance degradation.

To further evaluate the influence of noise and outliers on our predictions, we
compared the smoothing results against the non-smoothed interpolation method used
in previous works. We assessed the method using all data points (16 distinct values
of interference or contentiousness) collected during the interference benchmark and a
sampled version using four distinct interference values (25%, 50%, 75%, and 100%)
to create the interference curve. Table 4.3 summarizes the overall result. We do not
see an overall improvement compared to the smoothing values when using all data
points and right curves. Even though it has a mean error similar to linear smoothing
and better results than the static curves, its worst case prediction increases. This can
be viewed as a side effect of the noise intrinsic to the collected data for all sensitivity
curves calculated.

Table 4.3 Prediction error for smoothing functions and sampled data

Method # of % of Mean SD Max Cost
Points Reads (%) (%) (×)

Polynomial All points right curve 1.15 1.49 14.5 44
Linear All points right curve 1.19 1.59 14.0 44

Interpolation All points

right curve 1.19 1.63 24.2 44
50 1.34 1.89 18.3 4
75 1.34 1.82 19.4 4

100 1.43 2.19 21.0 4

Interpolation Sampled

right curve 1.35 1.62 18.1 11
50 1.47 1.91 18.1 1

(Memgen) 75 1.56 1.94 21.6 1
100 1.58 2.18 24.7 1

By sampling the data points and using the right curve, the interpolation maintains
the lowest mean error compared to its static counterparts. However, it increases
the worst case prediction error compared to the smoothing methods and decreases
it compared to using all data points. A positive side effect of sampling the data

4.4 Experimental Evaluation Single Node 58

for the right curve results is that part of the noise is removed and the interpolated
values provide a more stable result, which explains its results compared with the other
methods. This aspect illustrates that the overall accuracy is affected by the data points
and smoothing function, which decreases the effects of outliers and improves the worst
case predictions.

Another important point to be considered is the effective cost to achieve the results.
In Table 4.3 for our initial approach the high cost of using the right curve can be
broken down into two components: the number of read/write curves and the number
of data points collected. In our tests, we analyzed 11 different read/write ratio curves
(from 50% to 100% increasing 5% each step) and we also sampled 12 supplementary
points (interference or contentiousness values) in addition to the default 4 points used
in previous works. Even though polynomial smoothing has the best results so far,
it also has the highest cost to compute. The cost is 44× higher than using a single
sampled static curve due to the additional curves collected and the number of points.

To investigate the effects of the trade–off between accuracy and cost, we reduced
the cost of our methodology by estimating the values for the right curve based on two
sampled curves. For this test, we used the values of 50% and 100% sampled sensitivity
curves collected for the previous test, and we estimated the performance of the target
application based on the read/write ratio proximity of the interfering application to
both curves. The process is shown in equation 4.3. First, we calculate the proximity
(scale) of the interfering application read/write ratio to 100% ratio. Then, we predict
the performance of the target application for 50% (P 50%) and 100% (P 100%). In
the end, we apply a weighted mean estimation to determine the estimated performance
(P_est).

𝑠𝑐𝑎𝑙𝑒 = (𝑖𝑛𝑡𝑒𝑟 𝑓_𝑟𝑎𝑡𝑖𝑜 − 50)/(100 − 50)
𝑃_𝑒𝑠𝑡 = ((𝑃50%) × (1 − 𝑠𝑐𝑎𝑙𝑒) + (𝑃100%) × (𝑠𝑐𝑎𝑙𝑒))

(4.3)

Table 4.4 summarizes the overall result of reducing the cost of the methodology.
Sampling the data points decreases to 11× the cost of using the right curve for the
smoothing methods, as we keep the same number of read/write ratio curves we collected.
A smoothed sampled curve also keeps the mean and maximum prediction errors lower
than the sampled static curve. However, we achieve the best trade-off between cost
and error in estimating the values for the right curve. We reduce the cost to only 2×
and the results are similar to those using a higher number of curves and data points.

4.4 Experimental Evaluation Single Node 59

The linear method is better than the polynomial one with 1% of difference for max
error, thus we chose it to compare with the state–of–the–art.

Table 4.4 Prediction error for estimated curves

Method # of Mean SD Max Cost
Points (%) (%) (×)

Polynomial
All data 1.15 1.49 14.5 44
Sampled 1.21 1.43 15.4 11

Estimated 1.19 1.48 15.6 2

Linear
All data 1.19 1.59 14.0 44
Sampled 1.21 1.48 13.7 11

Estimated 1.19 1.50 14.6 2
Interpolation (Memgen) 75 1.56 1.94 21.6 1

4.4.5 Comparison with Memgen

In this section, we compare our methodology to the state–of–the–art Slowdown based
methodology, Memgen [28]. Memgen uses a modified version of the Triad workload to
generate a specific amount of traffic, then creates contention for the target application.
Memgen creates four reference points which are 25, 50, 75, and 100% of the sustainable
bandwidth as its interference pressure. To create the sensitivity curve, Memgen
relies on linear interpolation between the reference points in order to estimate the
performance, and defines the contentious pressure as the memory bandwidth usage of
an application. To evaluate the applications’ memory bandwidth usage, Memgen uses
the bus_trans_mem.self performance counter.

To apply the Memgen methodology to our environment, we adapted some un-
available features that will be discussed hereafter. Their triad version code is not
available online, so we could not use the same interference application to create the
sensitivity curve. However, as their version is based on the triad algorithm from
STREAM, we applied our interfering application that generates a 75% read/write
ratio. Using this specific configuration to create the sensitivity curve, we maintain
the same static read/write ratio and computing characteristics used by the authors in
their work. Another point regarding the sensitivity curve is that [28] and [79] do not
specify whether the values of the 𝑥-axis are the maximum bandwidth or the interfering
bandwidth in contention. We assumed the same approach applied in our work, using
the maximum bandwidth achieved during the interfering test.

4.4 Experimental Evaluation Single Node 60

Another adapted feature concerns using the bus_trans_mem.self performance
counter [136] to compute the application’s memory bandwidth. This counter is unavail-
able in the Sandy Bridge processor architecture [120] which is used in our experiments.
As a consequence, to calculate the contention pressure we applied the CAS performance
counters to measure the application’s memory bandwidth. These performance coun-
ters calculate with high precision the actual bandwidth for applications keeping the
comparison fair. The result of the comparison with Memgen is shown in Figure 4.14.

In the Figure we can see that the error for the Memgen methodology is higher
than using our methodology. For our approach, the distribution of errors is more
concentrated in the base, which means that it has the majority of its predictions close to
the true value. The Memgen methodology has a relative mean error increase of almost
24% (see Table 4.4 Interpolation method). This is also true for the worst case, where
the max error is 21.6% using the Memgen approach and 14.6% using our approach.
These results highlight that by distinguishing the interference caused by different ratios
of read/write and increasing the number of points collected, the Slowdown method can
be improved.

0%

5%

10%

15%

20%

Memgen Method Our approach

E
rr

o
r

Figure 4.14 Distribution of error for Memgen methodology and our approach.

Another important point to be considered is the effective cost to achieve the results.
In Table 4.4 the column Factor indicates the cost to achieve the results compared to
the Memgen approach. The cost of using the right curve can be broken down into
two components: the number of read/write curves and the number of points. In our
tests, we analysed 11 different read/write ratio curves while the Mengem approach
uses only one read/write ratio curve. Comparing any right curve results with its static

4.5 Experimental Evaluation Multi Node 61

counterpart, we can see that all mean and max errors are lower, except using all data
points where we can confirm that outliers have a considerable impact on the results.
Our estimated method was able to decrease our overall prediction cost and still achieve
lower mean error than the static read/write approach.

4.5 Experimental Evaluation Multi Node
We evaluate the effectiveness of our multi node contention model that predicts the
degradation of a target application when it experiences different levels of interference
while running on different nodes. For the multi node approach, we followed the same
methodology applied to the single node approach. In our experiments, we start both
target and interfering applications at the same time on every node. Since we are
dealing with distributed applications, the interfering applications may differ in terms
of interference levels and number of nodes. During the experiments, if any interfering
application on any node finishes, we restart it to keep the target application under
contention throughout its entire execution. We continue the experiments until the target
executes at least 7×. Once the target application ends, its performance degradation
(delayed execution time) is recorded to be compared with the predicted performance
under a resembling scenario. The degradation for an application is calculated using its
normalized execution time alone in the system without interference. To visualize all
sensitivity curves for the multi node applications see Appendix A.

In our analysis we use at most 31 nodes due to the limitations of our access to the
infrastructure. We are only allowed to reserve up to 32 nodes on its resource manager.
To correctly profile the applications, in this reservation, we have to use one head node
to run the scripts that control the experiment, otherwise, it would interfere with the
results. The script would take away one core from the local or remote application
leaving fewer resources for the computation and thrashing the performance counters.
In this regard, it is sensible to separate one node to exclusively run the script.

Figures 4.15 and 4.16 present the results for a mix of interfering applications that
vary in contentiousness (see Section 4.3.2), nodes, and read/write ratio. Figure 4.15

presents the maximum error for several combinations of profiled applications when the
target application runs locally. We notice that the max errors are lower than 10% for
most of the applications. Even though we notice an increase in the prediction error
when we move from 4 to 31 nodes for some applications (e.g. stream, streamcluster,
hpccg and hydro), it is also noticeable that the maximum prediction error does not
increase at the same rate as the number of nodes. Increasing the number of nodes

4.5 Experimental Evaluation Multi Node 62

from 4 to 31 (∼8× increase), the maximum error for any application increased at
most 3×. Demonstrating that we do not compromise the accuracy of the model when
increasing the number of nodes up to 31 nodes.

amg bt-mz hpccg hydro lu-mz minife sp-mz strcluster stream

4 16 31 4 16 31 4 16 31 4 16 28 4 16 4 16 31 4 16 31 4 16 31 4 16 31
0

5

10

Number of nodes

Ma
x p

re
dic

tio
n

er
ro

r (
%

)

Figure 4.15 Slowdown model prediction maximum error using multi node approach.

As we intend to use the methodology for our analysis of resource management and
job scheduling decisions, we cover some special cases regarding possible job placement
and the kind of degradation it might suffer. We underline one special case: when the
access to memory is fully remote. To predict the performance of the applications when
memory access is fully remote, we created the sensitivity curve for remote access. In
this case, our target application runs completely remotely, while the interfering runs
locally. To simplify the costs of benchmarking, we collected the performance under
100% local interference and interpolated the points between the collected point and
the remote performance alone (0%, without interference).

amg bt-mz hpccg hydro lu-mz minife sp-mz stcluster stream

4 16 31 4 16 31 4 16 31 4 16 4 16 4 16 31 4 16 31 4 16 31 4 16 31
0

5

10

15

20

Number of nodes

Ma
x p

re
dic

tio
n

er
ro

r (
%

)

Figure 4.16 Slowdown model prediction maximum error for remote execution.

Figure 4.16 presents the maximum prediction error for the remote execution. We
observe that the maximum errors are kept below 10% and for some applications,

4.6 Conclusion 63

increasing the number of nodes does not generally increase the maximum prediction
error. In Figures 4.15 and 4.16, the streamcluster application experiences a high
prediction error. This application has high variance in its runtime even without
contention. Consequently, the prediction model for this application is more challenging
to build.

4.6 Conclusion
In this Chapter, we presented our Slowdown based methodology to build a contention
model to predict the performance degradation that results from contention in remote
memory access. We added to the methodology the concepts of smoothing and read/write
memory access ratio to create the correct sensitivity curve, in order to increase
the accuracy and similarity with real executions. Using the characterization of an
application’s sensitivity to contentious pressure from remote access to the memory
subsystem, we were able to predict an application’s performance in a pairwise execution
with 1.19% prediction error on average and 14.6% in the worst case. Compared with
the state–of–the–art, the relative improvements are almost 24% on average and 33%
for the worst case.

Interesting avenues to build on this work in the future are detailed in Section 9.1.
We believe that the approach presented in this Chapter is of particular importance for
novel and upcoming global shared memory architectures and to analyze future resource
allocation decisions for such platforms. We will therefore use the proposed model in an
at-scale evaluation of the proposed allocation and scheduling policies for disaggregated
memories using the Slurm simulator.

This page is intentionally left blank.

Boi com sede bebe lama
Barriga seca não dá sono
Eu não sou dono do mundo
Mas tenho culpa, porque sou
Filho do dono

Petrucio Amorim

Part III:

Allocation and Scheduling in
Disaggregated Memory Systems

65

CHAPTER 5

Infrastructure and Experimental Methodology

In this Chapter, we introduce the methodology used in this work to evaluate the
implemented disaggregated approach and its at-scale evaluations analyzed in this

work. The content of this Chapter is used in our papers [40–42]. In the following
sections we will detail the methodology used to generate the workload applied in
our simulations. All simulations were carried out using the environment setup and
benchmarks detailed in Section 4.1 and the developed contention model presented
in Chapter 4. In Section 5.1 we detail the simulated systems applied in this work.
Section 5.2.1 describes the methodology to generate the synthetic workload used
during the evaluation of the disaggregated approach presented in Chapters 6 and 7.
Sections 5.2.2 and 5.2.3 detail the methodology used to generate the synthetic and real
workloads used to analyze the dynamic nature of memory usage in Chapter 8.

The methodology applied to Chapters 6 and 7 uses synthetic workloads in which
the memory requested is the peak usage throughout the execution of the job. The
metric is required as the workload model generator employed to create the input data
does not model the dynamic aspect of the memory usage of the jobs. Therefore, it is
sensible to assume the requested memory of a job is an estimation of its peak usage.
Then in Chapter 7, we analyze the implications of accurate estimation of peak memory
usage to the system’s performance. Additionally, enhancing the finds of Chapter 7, the
methodology applied to the Chapter 8 uses two different datasets for which we have
the profile of memory usage. As a result, we can contrast the system’s performance
considering static and dynamic memory allocation.

5.1 Simulated System Configurations 67

5.1 Simulated System Configurations
We set up different configurations to explore heterogeneity in job demands and node
capacities. The details of these experiments are given in Table 5.1. In Chapters 6
and 7, our HPC system has normal nodes, which have typical memory capacity, and
large nodes with twice the memory capacity of the normal nodes. To evaluate different
scenarios, we experiment with multiple ratios between large and normal nodes, varying
from 0% (all normal nodes) to 100% (all large nodes). We similarly define a job to
be large if it requires a large capacity node to run with the Baseline policy (without
disaggregation). A job is normal if it can execute on a normal capacity node. The
systems have a total of 1024 nodes each having 32 cores and 32 GB or 64 GB of memory,
Slurm is configured to use its Baseline or our Disaggregated select resource policy. The
parameters for job scheduling are the same for all experiments. The input data is
generated using the methodology detailed in Section 5.2.1.

Table 5.1 Slurm configurations used for our simulations in Chapters 6 and 7

Configuration parameter Value(s)
System size 1024 nodes
Number cores per node 32
Memory per node 32 GB, 64 GB
Allocation policy Baseline, Disaggregated
Scheduling policy Backfill
Queue and Backfill size 100
Backfill and Scheduling interval 30 s
Heterogeneous system ratio: % Large nodes 0, 15, 25, 50, 75, 100

For the simulations and analysis carried out in Chapter 8, we changed the system
configuration to a more realistic setup based on the infrastructure in which the memory
usage trace was collected. Table 5.2 present the details of the HPC systems considered
in our simulations. For both the synthetic workload detailed in Section 5.2.2 and
the real workload detailed in Section 5.2.3, we use systems with a total of 1024 and
1490 nodes respectively. The latter matches the system from which the dataset was
collected. We use normal nodes with 64 GB and large nodes with 128 GB. We further
underprovisioned the systems by adding extra small nodes with 32 GB. Thus, we
experiment with multiple ratios between large, normal, and extra small nodes. However,
for each system, the largest memory node has either 128 GB or 64 GB memory. Slurm
is configured to use its Baseline or our Disaggregated select resource policy, with the

5.2 Workload Methodology 68

Disaggregated approach allocating memory statically or dynamically (see Chapter 8
for more details).

Table 5.2 Simulated system configurations for Chapter 8

Parameter Synthetic trace Grizzly trace
System size 1024 nodes 1490 nodes
Number of cores per node 32 cores
Memory per node (GB) 32, 64, 128
Allocation policy Baseline, Disaggregated
Scheduling policy Backfill
Queue and Backfill size 100
Backfill and Scheduling interval 30 s
% Large nodes 0, 15, 25, 50, 75, 100
Cost per node (excl. memory) $10,154† [137]
Cost per 128 GB $1280 [137]

† Cost per node includes node, network, switches, and small storage

All allocation policies have exclusive access to all CPUs of a node, which implies
that the Baseline allocation also considers exclusive access to the memory as well.
In our experiments we do not consider a swap system as in our experience, HPC
systems typically do not have swap enabled. For the cost–benefit analysis, detailed in
Section 8.4.3, we use the costs given in Table 5.2, which were taken from a recent analysis
of a small-scale HPC cloud platform [137]. It is known that the network topology
connecting the compute nodes also affects price and performance, even though it is not
mentioned in the analysis, we adopted a torus topology, sized as recommended by prior
work [138, 139]. Torus networks are commonly used in large scale supercomputers
and they have a lower cost compared to other popular alternatives such as fat-tree
typologies [139].

5.2 Workload Methodology
None of the traces described in Section 2.3 provide all of the information that is
required for our analysis. We used three sources of job traces, which are summarized
in Table 5.3. The first is based on the CIRNE model. The second uses the Google
trace shaped by HPC job statistics from CIRNE and Archer [140]. The third is based
on LANL’s Grizzly trace, augmented by the job submission times from the CIRNE
model. All traces are augmented to use the Slowdown model detailed in Chapter 4.

5.2 Workload Methodology 69

Table 5.3 Summary of information provided by the job traces

Trace Domain Submission Memory Number Job Slowdown Memory
times request of nodes duration model trace

CIRNE [70] HPC ✓ × ✓ ✓ ✓ ×
Google [74] Cloud × ×1 ✓ ✓ × ✓2
Grizzly [56, 76] HPC × × ✓ ✓ × ✓

1. Some records in the Google trace have the memory request, but most do not.
2. The Google memory trace is normalized to the largest machine (we assumed 12 TB).

5.2.1 Synthetic CIRNE Model

We generated synthetic workloads using the CIRNE Comprehensive Model [70] (details
see Section 2.3.2). However, the workload trace generated using the model does not
provide memory information about the memory capacity requested by each job. As an
important aspect necessary to our evaluation, we augmented the set of generated traces
with scaled memory information from the applications profiled in our real environment.
The step–by–step process to augment the synthetic trace is depicted in Figure 5.1.

 Pool of executed apps:
App name
size
runtime
memory size
memory bandwdith
memory read/write
ratio
etc...

Match job and real
app based on size

and runtime
similarity

Convert file to
simulator input

extension

Order
trace

by
jobs' size

 and runtime

Order real
apps

 by size and
 runtime

 Workload trace:

arrival time
start time
end time
job size
etc...

Order
new

matched
trace by

arrival time

Simulation
input file

1

2

3

4

5

Figure 5.1 Augmenting the workload trace with real application data. Methodology
adapted from [25].

First, we generate the synthetic trace using the CIRNE Model for the required system
size (Step 1). Alternatively, we use a pool of executed applications for which we have

5.2 Workload Methodology 70

a profile regarding size, runtime, memory bandwidth, read/write ratio, local/remote
access memory ratio, and memory capacity requested (Step 2). Using the trace and
app lists, we calculate the Euclidean distances to map each real application to a similar
synthetic job based on its size and runtime (Step 3). In the case of having different
applications with the same size and runtime, several strategies can be applied to select
the mapped pair of jobs and applications. In our methodology, we pick the first pair
of the mapped job–application from our output to represent the job in our trace and
ensure the process is reproducible when recreating the traces.

Finally, we generate the new augmented trace by the assigned arrival time (Step 4)
and convert it to a binary readable by the simulator (Step 5). In the end, we have a
new input trace preserving the synthetic trace info that includes a memory capacity
required and an identifier for the job application. The memory capacity will be used
for resource scheduling, while the application identifier will be used in our contention
model (Section 4.3.2) to calculate the slowdown suffered by this particular job due to
resource sharing.

We generated additional input trace files, each targeting one of the specific hetero-
geneous system ratios listed in Table 5.1. This way we match the trace profile in the
number of jobs issued to the large capacity nodes to the ratio of nodes in the system,
thereby allowing a more comprehensive analysis of the system when it runs balanced or
an imbalanced workload mix. We ensure that all traces have total node–hours (#nodes
× runtime) of large and normal jobs in the indicated ratio. The characteristics of the
large and normal jobs are given in Table 5.4.

Table 5.4 Large and normal job characteristics for CIRNE generated trace

Normal Jobs Large Jobs
Metric Memory (GB) Node–hours Memory (GB) Node–hours
Min 0.12 0.0 33.0 0.0
1st Qu. 1.7 0.85 48.2 0.0
Avg 6.2 52.6 48.5 24.9
3rd Qu. 3.8 15.0 49.8 2.1
Max 27.6 6412 49.8 3659.0

All normal jobs have memory demand less than the capacity of a normal node,
whereas all large jobs have memory demand greater than a normal node. In terms of
baseline node–hours, the normal jobs are typically larger than the large memory jobs.
We generate the input traces for the simulator by sampling without replacement, in

5.2 Workload Methodology 71

the appropriate proportions, from these two distributions. This allows us to expose the
effects of the strong scaling in the system since HPC users are often driven by time to
solution, therefore memory underutilization is common as jobs of good scalability are
distributed over various nodes to accelerate its execution.

5.2.2 Synthetic Model plus Google Trace

In order to use the Google trace (detailed in Section 2.3.3) and draw meaningful
conclusions, we performed some adaptations before adding it to our methodology.
Adapting Google trace — In this work, we are only interested in the job request
type, as allocation requests would not provide the exact starting and finishing times of
the applications running on it. Since it is composed of several traces for each cluster, we
chose the trace having the largest proportion of best-effort batch jobs (trace data from
Cell b according to [74]), which are low priority jobs handled by the batch scheduler. To
use the job’s records that resemble HPC jobs the most, we filtered the trace using the
job’s priority and scheduling class parameters that define them as latency insensitive
batch jobs. These kinds of jobs approximate from batch jobs usually submitted to
HPC clusters as they aim to finish as quickly as possible.

However, batch jobs in their cluster typically have no strict completion deadlines.
They are evicted and killed to free resources for high-priority jobs. We filtered the jobs
that finished normally at least once, and we denormalized the memory usage per node
to match our trace. Since the Google trace does not have the value for the highest
memory capacity in the system, we used the max value of 12 TB to denormalize the
data as it was reportedly used in their data centers in the same year of the trace’s
release [141].

As mentioned in Section 2.3.3, the trace reports usage as the average and maximum
usage during a series of 5 min measurements. We use the maximum used memory to
define the usage for the period between two measurements. We correlate the simulated
job’s progress and the usage record, calculating which progress each measurement
should represent. We divide the number of records by the task runtime. Then, we use
the cumulative sum of the result to define which progress the record represents.
Generating the input files — In order to use the Google usage trace we also generated
the input job trace files using the CIRNE Comprehensive Model [70]. However,
differently from the previous methodology presented in Section 5.2.1, we augmented
it to cover two main aspects for our dynamic memory evaluation. The first one is to
correlate the generated file with the Google usage trace, and the second aspect is the

5.2 Workload Methodology 72

specification of the job’s memory request, which is not modeled by the CIRNE model.
The complete methodology is presented in the Figure 5.2.

 Pool of executed apps:
App name
size
runtime
memory bandwidth
memory read/write
ratio
etc...

Match job and real
app based on size

and runtime
similarity

Order
trace

by
jobs' size

 and runtime

Order real
apps

 by size and
 runtime

 Workload trace:

arrival time
start time
end time
job size
etc...

Order
new

matched
trace by

arrival time

1

2

3 4

Initial methodology

 Google trace:

job runtime
number of tasks
memory usage
etc...

Generate memory
request using Archer
memory distribution

Extension

Match synthetic job
and google job based
on size, runtime and

memory similarity

Filter
trace
into a

specific
system

memory ratio

Convert files to
simulator input

extension

Simulation
input files

9

5 6 7

Generate usage
trace file for every job

trace file

8

Figure 5.2 Extended methodology to augment workload trace with real application
data and per-job memory usage from the Google trace. Methodology adapted from [25].

We followed the initial steps of the previous methodology by first, generating the
synthetic trace using the CIRNE Model (Step 1) for the simulated system size. We then
use a pool of previously executed applications for which we have a profile regarding

5.2 Workload Methodology 73

size, runtime, memory bandwidth, read/write ratio, and local/remote access memory
ratio (Step 2). To correlate both data, we calculate the Euclidean distance to map each
real application to a similar synthetic job based on its size and runtime using the trace
and app list (Step 3). Following, we order the generated file by its arrival time (Step 4).
These four steps comprise the main initial methodology applied to generate the trace
files used in our initial evaluation.

The initial methodology is augmented with the steps detailed in the Extension
presented in the Figure 5.2. Previously, we scaled the memory used by the correlated
application in our contention model as a proxy for its job memory request. For
this evaluation, we generate the memory request following the memory distribution
presented in [140]. It presents the actual memory per node demands of the most used
applications on a contemporary HPC supercomputer. The distribution is displayed in
Table 5.5. For each job, we use its size to generate the memory request (Step 5).

Table 5.5 % of maximum memory usage per node for all jobs. Table adapted from [140].
(Small: ≤ 32 nodes; Large: > 32 nodes)

Max memory use Usage
(GB/node) All Small Large

(0,12) 61.0% 69.5% 53.0%
[12,24) 18.6% 19.4% 16.9%
[24,48) 11.5% 7.7% 14.8%
[48,96) 6.9% 3.0% 11.2%
[96,128) 2.0% 0.4% 4.2%

Once we have the memory demand for each job, we calculate the Euclidean distance
once more, but this time to map each job and its new memory capacity to a Google
job (see the beginning of the Section), to create its usage trace profile (Step 6). The
usage trace profile is an additional trace file with several records having the jobid, node,
max memory usage for the period, and the application’s progress, which represents
the starting point of the period. To keep the simulation time under control, for each
job and node, we filter the number of records using the Ramer–Douglas–Peucker
(RDP) [142, 143] algorithm. It is a method that resamples a curve to a similar curve
with fewer points.

Table 5.6 presents the characteristics of the defined large and normal jobs. The
memory demand of normal jobs is less than the capacity of a normal node (see
Section 5.1 for node definition), whereas all large jobs demand more memory than a
normal node capacity. The generated input job traces for the simulator are sampled
without replacement, in the appropriate proportions, from these two distributions.

5.2 Workload Methodology 74

The distribution for maximum, average usage, and requested memory broken down by
job size are presented in Figure 5.3. In our traces, the average usage is much lower
than the maximum usage, which opens up room for improvements during resource
allocation. On the other hand, we take a conservative approach in our study having
similar distribution for the maximum usage and requested memory. As mentioned
in [36, 37, 2], users are implicitly encouraged to overestimate their resource request, to
avoid having the job killed due to insufficient requested resources.

Table 5.6 Large and normal job characteristics for Google plus synthetic trace

Normal Jobs Large Jobs

Metric Memory (MB) Node–hours Memory (MB) Node–hours

Min 0 0 65538 0
1st Qu. 4037 132 76176 256
Median 8089 2717 86961 6720
3rd Qu. 15341 29264 99956 77028
Max 65532 23082880 130046 23329920

We sample the job trace into additional input files to target each of the specific
heterogeneous system ratios listed in Table 5.2 (Step 7). For every trace, we keep the
total node–hours (#nodes × runtime) of large and normal jobs in the indicated ratio.
We also separate the usage trace profile for each additional file created in the previous
step (Step 8). Finally, we convert the new augmented traces to a binary readable by
the simulator (Step 9).

In the end, we have a new input job trace preserving the synthetic trace info, but
including the memory capacity and an identifier for the job application. The memory
will be used for resource scheduling, while the application identifier will be used by
the contention model to calculate the slowdown suffered by this particular job due to
resource sharing.

5.2.3 Adapting Grizzly Trace

The methodology applied to the Grizzly dataset is much simpler than the ones presented
in the previous Sections. To be able to use and simulate the Grizzly dataset, we
extracted some periods from the entire dataset. We separated the dataset into periods
(a week) to group jobs into a reasonable set of jobs. Then, we calculated the utilization
using the average node–hours usage to represent the average cluster node utilization
before we start our simulations. To perform this calculation, we summed the node–

5.2 Workload Methodology 75

hours of all jobs in the period and divided it by the period’s makespan (calculated
using the start time of the first job and end time of the last job in that period).

10.31%4.91% 8.12%9.37% 5.61%11.5%1.55% 1.34%

1.6%0.39% 5.28%1.03% 2.82%1.41%0.11% 0.25%

0.41%1.12% 1.44%0.56% 0.47%0.34%1.68% 1.09%

2.06%2.88% 9.9%2.27% 2.18%2.09%3.81% 2.12%

0%0% 0%0% 0%0%0% 0%[96,128)

[48,96)

[24,48)

[12,24)

[0,12)

[1
,1

]
[2

,2
]

(2
,4

]
(4

,8
]

(8
,1

6]

(1
6,

32
]

(3
2,

64
]

(6
4,

12
8]

Job size (nodes)

A
vg

 m
em

or
y

us
ed

(G
B

/N
od

e)

(a) Average memory usage from usage trace profile.

7.03%4.19% 6.13%7.77% 4.04%7.55%1.5% 1.05%

2.47%0.6% 1.79%1.42% 1.5%3.67%0.08% 0.45%

1.57%0.45% 1.12%0.67% 0.9%0.97%0.15% 0.15%

2.75%3.4% 9.92%2.84% 2.94%2.62%4.58% 2.61%

0.56%0.66% 5.78%0.53% 1.71%0.53%0.84% 0.55%[96,128)

[48,96)

[24,48)

[12,24)

[0,12)

[1
,1

]
[2

,2
]

(2
,4

]
(4

,8
]

(8
,1

6]

(1
6,

32
]

(3
2,

64
]

(6
4,

12
8]

Job size (nodes)

M
ax

 m
em

or
y

us
ed

(G
B

/N
od

e)

(b) Maximum memory usage from usage trace profile.

7.03%4.19% 6.13%7.77% 4.04%7.55%1.5% 1.05%

2.47%0.6% 1.79%1.42% 1.5%3.67%0.08% 0.45%

1.57%0.45% 1.12%0.67% 0.9%0.97%0.15% 0.15%

2.75%3.4% 9.92%2.84% 2.94%2.62%4.58% 2.61%

0.56%0.66% 5.78%0.53% 1.71%0.53%0.84% 0.55%[96,128)

[48,96)

[24,48)

[12,24)

[0,12)

[1
,1

]
[2

,2
]

(2
,4

]
(4

,8
]

(8
,1

6]

(1
6,

32
]

(3
2,

64
]

(6
4,

12
8]

Job size (nodes)

R
eq

ui
re

d
m

em
or

y
(G

B
/N

od
e)

(c) Requested memory from job trace.

Figure 5.3 Trace memory heatmap distribution versus job size for the synthetic model
plus Google trace.

5.2 Workload Methodology 76

We sampled the Grizzly dataset (see Section 2.3.4), to obtain a smaller trace that
was feasible to simulate. Figure 5.4 shows all the one-week periods in the Grizzly
dataset, in terms of CPU utilization (on the 𝑥-axis), maximum job node–hours (on the
𝑦-axis of the left-hand plot) and maximum job memory usage (on the 𝑦-axis of the
right-hand plot). The CPU utilization was calculated as the total node–hours of the
jobs divided by the total node–hours over the period. The simulated periods are shown
as blue triangles and the remaining periods are shown as gray dots. We took a random
sampling of the weeks with a utilization of 70% or more, which is representative of
HPC [56]. We then randomly chose seven periods to simulate. Figure 5.4 shows that
the chosen periods are representative of the important periods during which utilization
is relatively high.

Max node hour (s) Max memory usage (MB)

25 50 75 25 50 75
0.00

0.25

0.50

0.75

1.00

CPU Utilization (%)

N
or

m
al

iz
ed

 M
et

ric

Figure 5.4 Sampling the Grizzly usage trace. Each point represents a 1-week period.
Simulated periods, depicted as blue triangles, are representative of weeks with CPU
utilization ≥ 70%.

We generated the input job traces using seven periods selected from the dataset.
First, we separate from the jobs’ specifications the metrics we could extract from them,
e.g. runtime and the number of nodes. However, to simulate the traces we must create
a SWF like trace style used by the simulator. Consequently, we augmented them to
generate the missing fields required by our simulation methodology, e.g. requested
memory, submission time, application id. For the requested memory metric, we used
the maximum memory consumed by the job in any node. As this information is
not present in the initial dataset, we intentionally used the maximum memory usage

5.2 Workload Methodology 77

reported, because by doing so, we would be able to verify the significance of users’
resource estimation on the system’s performance.

Then, to finalize the setting up of the simulated job traces, we generated a submission
distribution using the CIRNE Comprehensive Model [70] and we performed a Euclidean
distance to map each job to a real application in our pool of previously executed
applications. This step maps each real application (presented in Section 4.1) to a
similar job in the selected period based on its size and runtime. This step is necessary
in order to use our contention model during the simulation to estimate the effect of
shared memory resources.

In the end, since the dataset is composed of several records of memory consumption
for every job in each compute node (every ten seconds), we formatted the usage trace
to our simulation methodology. We generated our usage trace profile for each selected
period. The usage profile is an additional trace file with several records having the jobid,
node, memory usage, and the application’s progress, which defines the time window
the recorded memory usage represents. To keep the simulation time under control, we
apply the RDP [142, 143] algorithm for each pair of jobs and node to filter the number
of records from the usage trace profile. The algorithm will resample it to a similar
curve with fewer points.

CHAPTER 6

Extending Slurm Simulator for Disaggregated
Memory

In the previous Chapters, we introduced basic concepts and materials used throughout
this work. We also introduced a generic approach to estimate the performance

degradation due to the sharing of disaggregated memory using a profiling technique.
By contrast, this Chapter describes how we extended the Slurm resource manager to
support disaggregated memory and how we integrated the developed contention model
(presented in Chapter 4) in our simulated environment. The content presented in this
Chapter can be found in our paper [40].

Over 90% of the HPC systems in the TOP500 list are built using a cluster architec-
ture. HPC clusters are cost-effective, well understood, and scalable to thousands of
nodes. In a cluster architecture, the coordination of all hardware and software falls
under the control of the resource management software. It is a key component for
the distribution of computing power within the cluster infrastructure. The resource
manager’s goal is to satisfy users’ demands for computation and achieve acceptable
performance in the overall system utilization by efficiently matching requests to re-
sources.

Nevertheless, the rigid boundaries between compute nodes limits compute and
memory resource utilization in existing HPC systems. HPC applications are rarely
co-located on a compute node [10], so they have exclusive access to self-contained
servers, and any of the node resources that are not used by the running application
cannot be made available to other applications. This problem of stranded resources
is especially critical for memory [1] because HPC application memory demands vary
dramatically, by orders of magnitude, due to application characteristics and strong
scaling [6, 7].

79

Disaggregated memory has recently been proposed to allow a flexible and fine-
grained allocation of memory capacity to compute jobs [14, 8, 10]. In this direction,
we propose an extension to the Slurm job manager to allocate memory capacity to jobs
in a disaggregated memory system. Research in job scheduling cannot easily be done
using a production system, and in any case, disaggregated memory prototypes are
still at the research level, and system software is immature. We, therefore, extend an
existing simulation approach using Slurm to account for memory bandwidth contention
in disaggregated memory leveraging the developed Slowdown based method presented
in Chapter 4. We then use the extended Slurm simulator to determine the overall
system throughput, job queuing, and execution time of a large-scale disaggregated
HPC system.

A positive aspect brought by the disaggregated architectures is that requests from
resource-hungry applications can be executed in such architecture consuming resources
from other servers, while others can share memory to better exploit memory capacity
and improve performance [26]. They can be submitted to a regular queue, avoiding
the need to wait for large memory nodes1 (typically a small number in the cluster),
without having to overprovision resources [7].

In summary, the major contributions of this Chapter are:
1 A Disaggregated-aware allocation policy implemented in the Slurm resource

manager. The allocation policy allows nodes to use the memory capacity of a remote
node when the memory demands of submitted jobs exceed the system node’s local
memory.

2 We present an extended job scheduler simulator to support disaggregated
memory on top of the Slurm resource and job management system. The simulator
environment supports the evaluation of several adaptations to the resource manager
and takes into account the heterogeneity among the resources.

3 An at-scale evaluation of our contention model and allocation policy for disag-
gregated memories using the simulation environment. Using a disaggregated memory
approach, similar overall system throughput and job response time (waiting time plus
execution time) can be achieved when compared to an existing HPC system, while
using up to 33% less memory, depending on the imbalance between the system and the
memory demands of the submitted jobs. The Slurm simulator extension and allocation
policy are released open source [144].

1On MareNostrum–4 at BSC large memory nodes represents only 6% of the total number of nodes.

6.1 Resource Allocation for Disaggregated Memory Systems 80

6.1 Resource Allocation for Disaggregated Memory
Systems

As presented in Section 2.1.1, one of the major characteristics that prevent the use
of disaggregation by the Slurm resource manager is that it has a processing and
server-based architecture. Memory management is tightly coupled with the availability
of CPU cores, despite being configured as a controlled resource. This means that
nodes without idle cores are excluded from allocations, even if there is unused memory
capacity. To improve the utilization and throughput of the system, we adjust the
scheduling and resource selection to support the use of remote memory capacity across
the cluster to create the disaggregated infrastructure for the resource manager.

We notice that modifying the resource selection and using remote memory across
the cluster impacts applications. This means that validation through simulating the
platform requires some degree of consideration for the application’s performance running
in such a configuration. To this end, in Section 6.2 we integrated the disaggregated
strategies considered in this thesis and the developed contention model described
in Chapter 4 to characterize the slowdown experienced by the applications sharing
memory resources.

After our initial analysis of the job scheduling process depicted in Figure 2.3 and
described in the Section 2.1.1, we modified the verification performed by the job
scheduling process to build the list of nodes available to the job. It checks what kind of
node configuration has enough memory capacity to satisfy the request before removing
it from the selection. In the baseline system, if no nodes can satisfy the request then an
error is raised, even though there is enough memory scattered throughout the system.

While the default allocation (Baseline) used by Slurm removes nodes with less
free memory than is required by the job, our allocation approach differs substantially.
We separate into distinct lists the nodes with available cores and memory. From this
point forward, we can adopt several strategies to allocate memory that will impact
application performance. Some of the strategies are described in the following Sections.

6.1.1 Job submission interface

In order to take advantage of disaggregated memory, the user must indicate the amount
of memory required. It may not always be possible to obtain this information, although
it must be pointed out that on existing systems users already need to have some idea
of the memory demands in order to choose whether to submit the jobs to the normal

6.1 Resource Allocation for Disaggregated Memory Systems 81

or large memory queue. In the following Chapters, we will discuss the impact of the
user’s provided memory demands on the overall system’s performance.

It is also worth pointing out that the user does not have to indicate the memory
bandwidth to allocate disaggregated resources to the job in our system. During
the allocation, the resource manager exclusively uses the requested memory, as we
already mentioned that it is the prevalent method on existing systems. Notwithstanding,
memory bandwidth is an important parameter used by our contention model during our
simulations to correctly estimate the contention on shared resources and consequently
the application’s performance. The parameter is incorporated into our job traces as
indicated in Section 5.2.

6.1.2 Supporting Memory Disaggregation

Figure 6.1 details some of the allocation strategies explored in this work. In this
Figure the letters represent jobs and their order of arrival. Our basic implementation
is the Strawman approach (Figure 6.1a), in which we consider every node with cores
and memory available. In this approach, we first select the processing units. Later, we
iterate over the nodes with memory available and accumulate it until the requested
amount of memory for the job is satisfied. The downside of this approach is that it
will generally assign mainly remote memory for the jobs, even though there is local
memory available for other nodes. As it can be seen in Figure 6.1a, Job B using a
single node allocates its whole memory requirement remotely because the local memory
associated with the selected compute units in node N3 is already taken by Job A. It
happens because in this approach both resources are treated completely independently
without trying to allocate memory close to the processing unit. Consequently, it will
compromise the jobs’ performance, since it will lead to undesirable higher contentions
and remote usage.

The following implementation is the Naive approach (Figure 6.1b). In this approach
the resource allocation starts packing memory locally to the job, otherwise, it uses
remote memory nodes. It tries to solve the problems arising from the Strawman
approach by mainly accumulating memory close to the cores. However, two major
issues arise from this approach. The first one is that since it accumulates the memory
locally, jobs with low memory requirements and jobs that do not fully utilize a local
memory node will have their memory packed on a few nodes which will decrease the
local memory ratio. In the Figure, Job C uses two processes (running on node N1 and
N2) and its memory requirement can fit on a single node. Consequently, the approach
will allocate the memory locally for the process running on node N1 and remotely for

6.1 Resource Allocation for Disaggregated Memory Systems 82

the process running on node N2. The second problem using the Naive approach is that
it might use nodes with a small amount of available local memory that will lead to
unnecessary high usage of remote memory. In this case, Job G is allocated to node N5
which has low local memory available, the remaining capacity is allocated remotely on
node N2.

To cope with the problems of the previous approaches we analyzed the Local
approach (Figure 6.1c). The idea behind this approach is that it only allocates nodes
that meet a defined threshold of local memory available. If the local memory is below the
defined threshold, the node is used only as a memory node for other jobs, which means
that the compute units associated with the node are not allocated to any incoming job.
In this case, node N4 has CPU and memory available, however, it effectively becomes
a memory node as the memory available is too low to receive new requests (most of its
capacity has been taken by another job). As a consequence, the next job to start, Job
K, allocates node N5 which satisfies its CPU and memory requirements. An issue with
this implementation is that for resource hungry jobs the allocation accumulates the
total required remote memory for the whole job. Consequently, we consider the job will
have several of its nodes contending for the same memory node due to local/remote
access.

We further improved Local approach implementing the Local spread approach
(Figure 6.1d). For this approach every compute node receives a specific memory node
based on its remote demand, hence eliminating the contention the job would have had
accessing the same memory node. In this case, for Job L running on nodes N1 and N2,
it will receive memory capacity from node N3 for the process running on node N1 and
memory from node N4 for the process running on node N2. This approach prioritizes
the usage of local memory while spreading the remote memory. For resource hungry
jobs, remote access will dominate the contention with other jobs when accessing the
remote memory nodes.

In spite of prioritizing nodes with higher local memory available to decrease the
remote memory usage and increase performance, a common issue to the Local, Local
spread, and similar approaches is that some nodes will be used exclusively as memory
nodes. Their memory threshold constraint can lead to a waste of CPU across the
system, which can decrease overall efficiency and increase the cost. Nevertheless, we
argue that this might happen when memory is the bottleneck and the most requested
resource in the system. In addition, previous studies have shown that memory is the
most underutilized resource, and therefore the overall performance will benefit from
better memory usage.

6.1 Resource Allocation for Disaggregated Memory Systems 83

CPU

MEM

N2 N3 N4

A A B

N5N1Node

(a) Strawman.

C C E FCPU

MEM

G

N2 N3 N4 N5N1Node

(b) Naive.

H H H KCPU

MEM

N2 N3 N4 N5N1Node

(c) Local.

CPU

MEM

N2 N3 N4 N5N1Node

L L M

(d) Local spread.

Figure 6.1 Graphical schemes of some memory allocations explored in this work for
a few simple cases. The letters represent the job’s order of arrival and each color
identifies different jobs and their respective allocated memory. Red boxes represent
allocations that incur unnecessary remote usage or contention. Green boxes depict
adequate allocation and white boxes represent resources available.

6.1 Resource Allocation for Disaggregated Memory Systems 84

6.1.3 Disaggregated Allocation Policy

Table 6.1 summarizes the allocation strategies considered in this work and detailed in
the previous Section. It also introduces the strategy employed for our results and is
detailed in this Section. The majority of the strategies had poor performance compared
to the baseline (see Section 6.3.5). They failed because they either generally assigned
mainly remote memory for the jobs (even in the presence of available local memory),
or because they used nodes with low local memory which contributed to increasing the
remote memory usage (decreasing local to remote ratio).

Table 6.1 Summary of disaggregated strategies considered in this work

Approach Summary Advantage Constraint

Strawman First it selects the process-
ing units. Then, accumu-
lates memory capacity to
satisfy the request.

Uses fewer re-
sources.

High usage of remote
memory.

Naive Accumulates memory
close to cores.

Increase local
bandwidth usage
compared to the
Strawman.

Uses compute units
with low local mem-
ory available. High
usage of remote mem-
ory.

Local Allocates nodes with a
minimum amount of lo-
cal memory defined by a
threshold.

Avoid allocating
nodes with low
memory capacity
available.

Nodes of jobs may
contend for the same
memory node. May
waste resources as
nodes can be used
solely as memory
nodes.

Local spread Every compute node re-
ceives an exclusive mem-
ory node.

Each node of
a job does not
share bandwidth
from remote
memory nodes.

Distinct memory fea-
tures lead to unneces-
sary remote memory
usage. May waste re-
sources as nodes can
be used solely as mem-
ory nodes.

(table continues)

6.1 Resource Allocation for Disaggregated Memory Systems 85

Table 6.1 Continued: Summary of disaggregated strategies considered in this work

Approach Summary Advantage Constraint

Chosen Uses baseline allocation
before the disaggregation.

Leverages dis-
tinct memory
configurations
to reduce the
need for remote
memory usage.

May waste resources
as nodes can be used
solely as memory
nodes.

Even though the Local spread approach tries to increase the local-to-remote ratio,
we notice two main issues when prioritizing the usage of local memory while spreading
the remote memory. The first issue is that the allocation will favor nodes that already
have memory remotely allocated instead of using nodes with free memory, consequently,
the job will have its execution slowed down due to unnecessary use of remote memory.
The second issue of this approach is that for resource hungry jobs in a heterogeneous
environment, it does not differentiate nodes with distinct memory features. Therefore,
the jobs can use nodes with much less total memory, and then to fulfill the requirement
it will use more remote memory. In this case, more remote access will slowdown the
jobs’ execution.

Normal capacity nodes
(32 GB)

Large capacity nodes
(64 GB)

B

32G

D

32G 32G
20G

CPU

MEM 32G

A A C

64G 64G

N1 N2Node N3 N4 N5 N6 N7 N8 N9 N10

48G 48G 40G

Figure 6.2 Graphical scheme of the memory allocation explored in this work for a
simple case considering a system with half of its nodes having 32 GB (5 nodes on the
left) and 64 GB of memory (5 nodes on the right).

Figure 6.2 presents a schematic simple case to exemplify the best allocation strategy
explored in this work. This Figure shows a heterogeneous system with 10 nodes,
equally divided into normal and large nodes. A, B, C and D represent the order of
jobs submitted to this system with different node and memory requirements.

6.2 Contention Model and Disaggregated Integration into Slurm Simulator 86

To mitigate the above issues experienced with previous strategies, we use the
baseline allocation method that increases the local-to-remote memory ratio, and we
employ the disaggregated strategy when there are insufficient nodes to satisfy the
current request or a resource-hungry job is scheduled. The baseline strategy selects all
nodes that have enough local memory to satisfy the job’s requirement of memory per
node to avoid unnecessary remote memory access. In Figure 6.2, jobs A, B, and D
uses only local memory since the approach is able to find the best node that satisfies
the job’s memory-per-node request. On the other hand, job C requires more memory
than any node in the system is able to provide. To serve this request we use our
disaggregated approach employing remote memory.

To improve performance, we do not use the CPU cores of nodes that have already lent
memory to another node (Section 6.3.4 evaluates the effect of relaxing this requirement).
This means that such a node effectively becomes a memory node for other jobs. Our
approach, then, to increase the local-to-remote ratio, favors nodes with higher memory
available applying a weight to each node based on their available memory. Then, nodes
with higher local memory available are selected, consequently decreasing the influence
of remote memory access. Instead of using normal nodes to satisfy the job’s C request,
the approach uses large nodes, thus increasing the local memory usage. For a newly
submitted job, node N9 might be used exclusively as a memory node since only 37,5%
of its local memory is available.

6.2 Contention Model and Disaggregated Integra-
tion into Slurm Simulator

Figure 6.3 shows our disaggregated memory approach and contention model integration
into the BSC Slurm simulator. Our disaggregated memory approach modifications are
depicted as red boxes, while the contention model integration is represented as dashed
red boxes. As detailed in previous Sections, our disaggregation approach modifies the
resource manager scheduling process by expanding the baseline resource allocation
with remote memory usage. All the modifications are done on the controller side
which performs all allocation and scheduling operations. However, since the simulator
Slurmd daemon is a simplification of the original source code, the contention model is
responsible to support the update of the simulated runtime.

The Slurm simulator previously assumed no contention among jobs, in terms of
network, CPU, and memory. This is a reasonable assumption for non-disaggregated
memory systems, due, firstly, to the independent nature of the compute nodes and,

6.2 Contention Model and Disaggregated Integration into Slurm Simulator 87

secondly, to the common use of non-blocking networks in HPC systems. This assumption
simplifies the simulator because the execution time of each job is independent of the
scheduling and allocation policies and is known in advance. The actual execution time
of each job is recorded as one of the fields in the SWF trace file.

Available
nodes

Schedule

Select
nodes

Verify node
state

Select memory
nodes

Slowdown
model

Send job
duration

Launch
job

Allocate
nodes

Allocating disaggregated resources

Remote memory access model

Simulate
job

Slurmctld Slurmd

Update job
duration

Update
simulated

queue

Trace

sim_mgr

slurmctld slurmd

SLURM
logs/outs

Shared
Memory

Individual
job's & system's

metrics

SyncSLURM API
(sbatch)

SLURM simulator

slurm.conf

Figure 6.3 Developed disaggregated memory scheduling and contention model inte-
gration into BSC Slurm simulator.

We modified the trace format to also provide the information needed by the memory
access contention model (see Section 5.2.1 and Chapter 4). In fact, since many of
the jobs were for similar applications, we use a unique identifier for each simulated
application type. The trace file specifies the baseline execution time without contention
and the application type identifier. Using the application type identifier we are able to
access its bandwidth (contentiousness) and the local-to-remote access memory ratio
(penalty accessing remote memory). As pointed out in Section 6.1.1, this information
is only used by the contention model to correctly estimate the contention on shared

6.3 Evaluation 88

resources. The allocation policy does not need this information and therefore no extra
profiling is required to allocate resources.

We modified the simulator to invoke the contention model each time any job starts
(Launch job function). The contention model calculates the estimated performance
of every job that potentially has a contention with the starting job. It will also
account for the slowdown the jobs suffer accessing remote memory in case of having
no contention with another running job. The output of the contention model is the
estimated performance of the job, 𝑃est, where for example 𝑃est < 1 whenever the job
suffers slowdown and a value of 𝑃est equal to 1 means that the job runs without
contention with other jobs or uses entirely local memory. The estimated performance
is interpreted as the speed at which the original baseline runtime is executed. After
each time period, the remaining runtime is updated based on the elapsed time and
the speed during this interval, as given in Equation 6.1. It is crucial to emphasize
that the contention model is also invoked upon the completion of each job. This
step is necessary to update the execution speed of any simulated jobs that experience
contention with the finishing job. By eliminating the contention caused by the finishing
job on the shared resources, we ensure a more accurate representation of the execution
of the remaining jobs.

𝑟𝑢𝑛𝑡𝑖𝑚𝑒_𝑙𝑒 𝑓 𝑡′ = 𝑟𝑢𝑛𝑡𝑖𝑚𝑒_𝑙𝑒 𝑓 𝑡 − 𝑑𝑒𝑙𝑡𝑎_𝑡𝑖𝑚𝑒 × 𝑃est (6.1)

As pointed out in Section 4.3.3, a drawback of using the contention model in our
experiments is that it considers only a single latency to model the access and contention
on remote memory usage across the cluster. We know that the farther the nodes are
from each other the higher will be the latency accessing the memory. Even though
we assume a single latency in our simulated system, the effect of this assumption on
performance in our results is further analyzed in Section 6.3.7.

6.3 Evaluation
The details of our simulated environment, configuration, methodology used for input
generation, and its distribution applied in our experiments are listed in Chapter 5.

6.3.1 System Throughput

Leveraging the contention model and the Slurm simulator, we evaluate the imple-
mented disaggregated infrastructure described in Section 6.1 simulating the different

6.3 Evaluation 89

heterogeneous scenarios presented in Section 5.2. In this step, we assumed that the
scalability of our memory access contention model has the same behavior presented
in Section 4.5 when we scale the number of nodes. For every system configuration,
we simulated different job mixes in terms of pressure on the large memory resource.
Figure 6.4 presents the throughput achieved for each simulated scenario when different
job mixes are submitted. It is normalized towards the homogeneous 100% large nodes
system since this system has enough resources to execute any job across all inputs.

Jobs Large 50% Jobs Large 75% Jobs Large 100%

Jobs Large 0% Jobs Large 15% Jobs Large 25%

0%15
%
25

%
50

%
75

%
10

0% 0%15
%
25

%
50

%
75

%
10

0% 0%15
%
25

%
50

%
75

%
10

0%

0%15
%
25

%
50

%
75

%
10

0% 0%15
%
25

%
50

%
75

%
10

0% 0%15
%
25

%
50

%
75

%
10

0%
0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

System large ratio

N
or

m
. T

hr
ou

gh
pu

t (
jo

bs
/s

ec
)

Baseline Disaggregated

Figure 6.4 Normalized throughput (𝑦-axis) experienced by each simulated system
(𝑥-axis) for various job mixes. Missing bars in the plots indicate there are not enough
large memory nodes to run all the jobs.

The baseline approach is able to execute all job mixes except when the system has
0% large nodes, in which case the baseline cannot execute any large jobs as no node has
enough memory. We, therefore, remove all baseline data points for the 0% system and
job mixes except 0% large. For this reason, the 𝑥-axis in Figure 6.4 has double bars

6.3 Evaluation 90

showing the comparison between the baseline and disaggregated approaches except for
the 0% system for job mixes with large jobs.

Figure 6.4 shows a clear trend in the system’s throughput based on the resource
availability and the jobs mix. We can notice that for the baseline approach throughput
is high when the job mix matches or is lower than the ratio of large and normal
memory resources within the system. However, the baseline’s throughput decreases
substantially when the job mix has a higher ratio of large memory jobs and the system
is underprovisioned to satisfy the request. It indicates that the resource manager
considers for allocation only a subset of nodes on the system that is able to run the
large jobs, thereby the jobs wait longer to have access to the resources needed leaving
aside other nodes. It contributes to increasing the makespan and therefore to low
utilization and throughput.

On the other hand, besides reaching the same throughput as the baseline when
the mix of jobs matches the system or the system is overprovisioned, our approach
increased the throughput compared to the baseline when the job mix runs on an
underprovisioned system. It happens because our approach performs a disaggregated
allocation that leverages the remote idle resources that are not used by other jobs or
that are not possible using the baseline approach.

The memory savings provided by the disaggregated approach are noticeable. For
example, when the job mix has 50% large jobs, the baseline requires at least 50% of
the nodes to have large capacity whereas the disaggregated approach has only 5%
degradation with 0% large capacity nodes (Figure 6.4). Since the large nodes have
twice the memory capacity of the normal nodes, the disaggregated approach reduces
the total memory capacity by 33%, compared with the baseline. The savings in the
other scenarios are lower but still significant. For the 15%, 25%, and 75% large job
scenarios, the potential memory savings are 14%, 20%, and 15%.

6.3.2 System Response Time

Figure 6.5 shows the cumulative distribution of the response time (defined by the
waiting time plus execution time) for two different systems and three job mixes. We
show these scenarios for brevity since the others exhibit the same trend presented in
this Figure. When the job mixes match (middle panels) or run on an overprovisioned
system (left-hand side panels), the approach’s lines overlap showing similar performance.
On the other hand, when the job mix stresses more resources on an underprovisioned
system (right-hand side panels), we notice that the baseline starts to increase its
response time compared to our approach. The jobs will compete for a small number

6.3 Evaluation 91

of resources hence increasing their waiting time. This performance penalty will start
to be apparent to the users in the system as their submitted jobs will take longer to
finish after their submission. The impact of decreasing resources is less noticeable with
our approach as it presents a lower probability of longer response times. Our approach
leverages the idle resources that are deemed unable to run some jobs by the baseline,
consequently decreasing the waiting time of some jobs.

System 50% Large

Jobs Large 25%

System 50% Large

Jobs Large 50%

System 50% Large

Jobs Large 75%

System 25% Large

Jobs Large 15%

System 25% Large

Jobs Large 25%

System 25% Large

Jobs Large 50%

1e
+0

1
1e

+0
3

1e
+0

5
1e

+0
1

1e
+0

3
1e

+0
5

1e
+0

1
1e

+0
3

1e
+0

5

1e
+0

1
1e

+0
3

1e
+0

5
1e

+0
1

1e
+0

3
1e

+0
5

1e
+0

1
1e

+0
3

1e
+0

5
0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Response time (s)

C
um

ul
at

ive
 d

is
tri

bu
tio

n

Baseline Disaggregated

Figure 6.5 Cumulative distribution of response time for two different systems and
different job mixes.

Figure 6.6 presents the distribution of response time across the top three scenarios
of Figure 6.5 but divides them into large and normal jobs. We only show three scenarios
for brevity, as we have seen that the other scenarios presented similar performance.
We can notice that for the scenarios in which there was no benefit from disaggregated
memory (left-hand side and middle panels), the baseline and disaggregated approaches
have similar response time distributions. However, in the scenario for which there is a
large reduction in response time (right-hand side panel), the large and normal jobs
benefit roughly equally.

6.3 Evaluation 92

System 25% Large

Jobs Large 15%

System 25% Large

Jobs Large 25%

System 25% Large

Jobs Large 50%
Large

N
orm

al

1e
+0

1
1e

+0
3

1e
+0

5
1e

+0
1

1e
+0

3
1e

+0
5

1e
+0

1
1e

+0
3

1e
+0

5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

Response time (s)

D
en

si
ty

Baseline Disaggregated

Figure 6.6 Response time distribution for large and normal jobs.

6.3.3 CPU and Memory System Utilization

Figure 6.7 shows the CPU and memory utilization, across all executed scenarios. In
all subplots, the 𝑥-axis is the CPU utilization and the 𝑦-axis is the memory utilization,
both relative to the maximum capacity of the memory and nodes of the system on
which the trace is executed. The scenarios are divided into overprovisioned (job mix
demands fewer large nodes than available), match (job mix demand equals the number
of large nodes), and underprovisioned (demands more). We notice that when the system
is overprovisioned to satisfy any submission of a job mix (left-hand side), our approach
and the baseline have similar performance. In this scenario, both are constrained by
CPUs, with a moderate utilization of memory. The same pattern goes for the scenarios
where the job mix matches the system ratio (middle).

When there is a mismatch between the job mix and the system resource capacity
(right-hand side) we see that the baseline performs poorly, and both memory and
CPU have low utilization. This happens because the baseline is constrained by the
number of large nodes, leaving normal node memory and cores idle and decreasing the
overall utilization. In contrast, our approach uses remote memory to satisfy the job
requests, hence increasing CPU and memory utilization in the mismatched scenarios.
The jobs are not constrained by the memory of a particular node but by the total

6.3 Evaluation 93

memory available within the system. On average, our approach increases the memory
utilization by a factor of 1.6, while having almost 90% of CPU utilization compared to
the baseline.

Overprovisioned Match Underprovisioned

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
0

25
50
75

100

CPU utilization(%)

M
em

or
y

 u
til

iz
at

io
n

(%
)

Baseline Disaggregated

Figure 6.7 Average memory and CPU utilization when using either Disaggregation or
Baseline under different job/node demands/capacities.

6.3.4 Varying Local Memory Threshold

To understand the effects of applying a threshold over the node’s available memory
before considering the selection of the compute nodes, we run several experiments
varying this parameter. The Figure 6.8 presents the performance of the disaggregated
approach when varying the local memory allocation threshold. We notice a slight
decrease in the throughput when we decrease the local memory threshold. Even though
we allow nodes with low free local memory capacity to take part in the compute node
selection, to improve the allocation process we apply a weight to ranking the nodes
based on their free memory capacity available before the actual node selection, which
decreases the influence of the threshold parameter.

6.3.5 Different Memory Allocation Designs

In this section we present the results of running the different designs implemented in
this work and detailed in Section 6.1.2, namely Strawman, Naive, Local, Local spread
and the chosen Disaggregated approach (defined in Section 6.1.3 and used in all results
in this Chapter). Figure 6.9 presents the normalized throughput for every design on a
few representative scenarios. Overall, the tested designs presented lower throughput
than the chosen disaggregated strategy. Strawman and the Naive approaches presented

6.3 Evaluation 94

Jobs Large 50% Jobs Large 75% Jobs Large 100%

5 20 40 80 100 5 20 40 80 100 5 20 40 80 100
0.6

0.7

0.8

0.9

1.0

Local memory ratio (%)

N
or

m
. T

hr
ou

gh
pu

t
(jo

bs
/s

ec
)

Figure 6.8 Effect of local memory threshold on throughput.

the lowest throughput among them in every scenario. It happens as both approaches
allocate more remote memory even though there is local memory available to the
compute nodes, thus increasing the remote-to-local ratio and exposing the application
to unnecessary slowdown. Local and Local spread presented an improvement over the
other two approaches with the latter having close results to our developed method on
the underprovisioned scenario since they share a similar remote memory allocation
policy. On the other hand, for overprovisioned scenarios, they decreased the throughput,
as they disaggregated resources even though there are nodes with enough local capacity
to satisfy the job’s memory request. In opposition, our chosen Disaggregated approach
applied in our simulations only resorts to disaggregation when there are insufficient
resources, thus decreasing job degradation.

Jobs Large 50%

System 50% Large

Jobs Large 75%

System 50% Large

Jobs Large 100%

System 15% Large

0.4

0.6

0.8

1.0

N
or

m
. t

hr
ou

gh
pu

t
(jo

bs
/s

ec
)

Disaggregated Local Local spread Naive Strawman

Figure 6.9 Normalized throughput for alternative disaggregated scheduling algorithms.

6.3 Evaluation 95

6.3.6 Scheduling Overhead

Figure 6.10 shows the averaged total scheduling time per job for both approaches in
all simulated scenarios. The total time is divided by the number of jobs in each job
mix, which varies from 16,000 to 27,000 jobs. To properly compare both approaches,
we removed the 0% system bar for the baseline approach, since the baseline is only
able to execute one job mix on this system. We can observe that as we add to the
system more large capacity nodes, the baseline takes advantage and decreases its total
scheduling time. Its large variance for underprovisioned systems is due to the large job
mixes that put more pressure on the insufficient resource, consequently generating a
bottleneck in the scheduling for the baseline. The increase in scheduling time is almost
completely explained by the larger number of attempts to backfill jobs. On the other
hand, the disaggregated approach is able to avoid this bottleneck and get more benefits
on underprovisioned systems. It presents less overhead than the baseline when memory
resources are constrained.

0

200

400

600

800

0% 15% 25% 50% 75% 100%
System large ratio

To
ta

l s
ch

ed
ul

in
g

tim
e/

jo
bs

 (m
s/

jo
b)

Baseline Disaggregated

Figure 6.10 Total scheduling time averaged per system.

6.3.7 Constraining Memory Allocation

In order to analyze the effects of the simplification in our contention model (single
latency model detailed in Section 4.3.3), we executed an experiment constraining the
number of nodes allowed to borrow or lend remote memory. We define a group as

6.3 Evaluation 96

the number of nodes that have similar latency among them but would have different
latencies accessing other groups, therefore we disable the allocation of memory between
groups. By grouping the nodes and limiting the number of remote nodes that can be
allocated, we try to quantify the effect that considering only one latency to access any
node in the system has on the achieved performance. Figure 6.11 shows the normalized
throughput (𝑦-axis) as a function of the number of nodes allowed to share memory
(𝑥-axis) in a group. As an example, for a group of 2, a node is only allowed to use its
local memory and the memory of a remote node close to it.

System 50% Large

Jobs Large 25%

System 50% Large

Jobs Large 50%

System 50% Large

Jobs Large 75%

System 25% Large

Jobs Large 15%

System 25% Large

Jobs Large 25%

System 25% Large

Jobs Large 50%

0 2 4 8 16 32 6412
8
25

6
51

2
10

24 0 2 4 8 16 32 6412
8
25

6
51

2
10

24 0 2 4 8 16 32 6412
8
25

6
51

2
10

24

0 2 4 8 16 32 6412
8
25

6
51

2
10

24 0 2 4 8 16 32 6412
8
25

6
51

2
10

24 0 2 4 8 16 32 6412
8
25

6
51

2
10

24
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Number of nodes allowed to share memory

N
or

m
. t

hr
ou

gh
pu

t (
jo

bs
/s

ec
)

Baseline Disaggregated

Figure 6.11 Normalized throughput (𝑦-axis) as a function of the number of nodes
allowed to share memory (𝑥-axis) considering two systems and different job mixes.

In this Figure we show the results considering the three common scenarios presented
throughout this work, which are: the overprovisioned and matched scenarios (leftmost
and middle panels), and the underprovisioned scenario (rightmost panels). For matched
and overprovisioned scenarios the assumption has no effect on the overall performance
achieved as we have seen that in these scenarios there is no need for using disaggregation.
These systems have enough resources to run the job mix without requiring remote
memory capacity.

6.4 Conclusion 97

On the other hand, for underprovisioned scenarios in which disaggregation is used,
most of the gains (comparing the baseline and disaggregated execution) is not due to
the simplification of the model using a fixed latency. We can notice that even using a
group of 2 it is already enough to outperform the baseline execution. Increasing the
number of nodes in the group does not increase dramatically the overall performance
as so to impact our results.

In our simulations (up to this point) our setup involves large memory capacity
nodes and normal memory capacity nodes (having half of the capacity of a large node).
Therefore, the demands of the jobs are no more than twice the memory capacity of the
normal nodes, which also helps to explain the disaggregated performance using a small
group of nodes. In this sense, an additional remote memory node is already enough
to improve the performance compared to the baseline execution, since the baseline is
not able to execute high memory demands jobs on lower provisioned systems. This
behavior might not hold true for cloud/data-center premises as nodes may support
the colocation of jobs in these systems. On the other hand, we target HPC systems in
which colocation of applications is rarely done.

6.4 Conclusion
Disaggregated memory addresses the problem of stranded resources inherent in the
dominant HPC cluster architecture that causes globally inefficient use of both CPU
and memory. In this Chapter, we investigated how a disaggregated–memory–aware job
scheduler can make use of a disaggregated memory platform to maintain throughput
and improve response time while using less total system memory. Since research in job
scheduling requires a simulation platform that is both faster and less intrusive than
running on a real system, in this thesis we extended an existing Slurm simulator to
support disaggregated memories. For a complete analysis, we developed and integrated
a contention model to quantify the impact of remote memory sharing on application
performance and embedded this model into the Slurm simulator.

We used the simulator to develop and evaluate at scale a disaggregated memory
allocation policy implemented in Slurm. The results show that depending on the level
of imbalance between the system and memory demands of scheduled jobs, memory
disaggregation enables resource savings of up to 33% compared to the state–of–the–art
resource manager. The Slurm simulator extension and allocation policy are released
open source in [144].

6.4 Conclusion 98

It is known that users must express beforehand their resource demands when
submitting jobs to HPC systems. The request will be based on users’ knowledge or
ability to estimate the resources necessary to run the job. Consequently, they will likely
overestimate their demands to avoid having the job killed by running out of resources.
In this Chapter we assumed that the submitted jobs perfectly estimate their demands.
For the following Chapters, we will dive into the effects of the user’s ability to predict
memory demands and job resource utilization on system performance.

CHAPTER 7

Memory Demands in Disaggregated HPC Systems

Disaggregated memory has recently been proposed as a way to provide a flexible
and fine-grained allocation of memory capacity [13, 14, 2, 8, 10, 26]. The addition

of disaggregated memory to an HPC cluster architecture would allow applications to
share system memory capacity, reducing or eliminating stranded memory resources
that would otherwise be unavailable to other HPC jobs, while maintaining the cost-
effectiveness and scalability of traditional HPC cluster architectures. Although there is
some ongoing work on dynamic resource assignment and malleability [33, 34], most
HPC job schedulers statically assign resources to jobs. This means that the user of a
disaggregated memory system is required to provide an accurate upper bound on the
job’s memory demands at submission time.

This Chapter investigates how critical such memory demand bounds are for max-
imising system throughput and minimising job response time (defined to be waiting
time in the queue plus execution time). We analyse to what degree the users would
have a natural incentive to provide accurate memory bounds. Our analysis uses the
extended BSC’s Slurm simulator for disaggregated memory systems (see Chapter 6).

We use a simulation approach for two main reasons. Firstly, there are no large-scale
HPC systems with disaggregated memory hardware including a complete software
stack. Secondly, and more importantly, simulations allow studies to be performed more
quickly without occupying the resources of large-scale production systems. Moreover,
the correlation analysis of Section 7.1.2 can only realistically be done using simulation.

In our studies, we show that from the HPC system operator’s perspective, overall
system throughput is conditional on accurate memory estimations, but, from the
perspective of a single user on a large system, there is little incentive to provide an
accurate bound on memory consumption. Even when the cost of a 60% increase in
memory demands only increases a single job’s user response time by 8%, the aggregate

7.1 Extending the Simulator with Memory Overestimation 100

result of everybody doing so can be a 25% reduction in system throughput and a
5× increase in average response time. We make some initial recommendations and
encourage additional research in this direction. If these results are reproduced more
widely, then it will almost certainly be necessary to allocate GB–hour memory capacity
explicitly, as part of the peer review process, in addition to the core–hours.

The contributions presented in this Chapter are published in our paper [41]. In
summary, we make the following contributions in this Chapter:

1 We use the extended BSC’s scalable Slurm simulator for disaggregated memory
to investigate how the user-specified memory upper bound affects overall system
throughput.

2 We introduce a simulation-based methodology to correlate the accuracy of the
memory upper bound with the job’s response time.

3 Assuming these results can be reproduced more widely, we make recommenda-
tions that can be applied to production systems.

7.1 Extending the Simulator with Memory Overes-
timation

We first extended the Slurm simulator with a memory overestimation module that
represents the user, by determining the memory consumption bound at submission
time, as a function of the actual peak memory consumption and the intended user
behavior. The output of this module is the estimated upper bound, which the Slurm
simulator passes to the disaggregated-aware Slurm in order to allocate resources. The
actual memory consumption, however, is still used by the Slowdown model to determine
the effect on performance.

In the baseline experiments, the upper bound equals the actual memory consumption.
This is the unrealistic best case, in which the users perfectly estimate each job’s
memory consumption. Otherwise, the estimated memory bound can be either (1)
overestimated by a fixed percentage, which can be used to quantify the general effect
of overestimation on overall system throughput and response times (in our tests, the
fixed percentage varies from +0% to +60%), or (2) overestimated by an independent,
identically distributed (i.i.d.) uniformly-random percentage between +0% and +100%,
which is used by our correlation analysis to quantify the effect on single job response
time.

7.1 Extending the Simulator with Memory Overestimation 101

7.1.1 Determining the Effect on System Throughput

To determine the effect of overestimation on system throughput, we configure the
memory overestimation module to uniformly overestimate the memory demands of
all jobs, between +0% (the baseline) and +60%. We then plot system throughput as
a function of the overestimation. The impact of the overestimation on the system’s
performance is discussed in Section 7.2.1.

7.1.2 Correlating Memory Overestimation and Response Time

To determine the effect of overestimation on individual job response time, we may
plot a typical job’s response time as a function of its memory overestimation, holding
everything else constant. But it is clearly not practical, in terms of simulation time,
to do this one job at a time. Instead, we perform a correlation analysis, by running
the original trace several times, applying a uniformly-random overestimation to each
job. For this correlation analysis to make sense, it is important that the degree of
memory overestimation is independent of other job characteristics. This is one reason
why the simulation approach is important, as it allows us to apply an i.i.d. random
overestimation. Observational data may be misleading, for instance, if larger jobs
systematically had a larger (or smaller) degree of overestimation.

Figure 7.1a shows a direct plot of the response time as a function of the memory
overestimation, across all jobs, for the scenario with 50% large jobs and 0% large nodes.
The full results, for all scenarios, are in Section 7.2. We add a trend line using linear
regression. Since the jobs have widely varying response times, even with no memory
overestimation, the points on the 𝑦-axis have a very large range, of which Figure 7.1a
shows a small part. We, therefore, filter the jobs using the baseline response time,
when the overestimation is +0%, to obtain Figure 7.1b, which is for jobs whose baseline
response time was between 3 × 105 s and 4.2 × 105 s. In this Figure the 𝑦-axis presents
the response time when the jobs overestimate their memory consumption. Similar plots
were obtained for each interval of baseline response times. There is still significant
noise, but it is much less than before. Figure 7.1b also shows the trend line, which
allows us to predict the average response, for jobs with the given range of baseline
response times, i.e. from +0% to +100%, as a function of the memory overestimation.

Finally, Figure 7.1c assembles all the information into a single figure. The 𝑥-axis
is the baseline response time, for +0% overestimation, and the 𝑦-axis is the actual
response time, depending on the overestimation (five different curves). In this example,
we see a large increase in the overall response times, e.g. from 2.0 × 105 s to 7.5 × 105 s

7.1 Extending the Simulator with Memory Overestimation 102

for the top-rightmost point, but we see very little difference between the +0% and
+100% cases. In Section 7.2.3, we will show the complete results, which follow a similar
trend.

2.30e+05

2.35e+05

2.40e+05

2.45e+05

2.50e+05

0 25 50 75 100
Memory overestimation (%)

Re
sp

on
se

 ti
m

e
(s

)

(a) Response time for all jobs.

100%
overestimation

0%
overestimation

4e+05

6e+05

8e+05

1e+06

0 10 20 30 40 50 60 70 80 90 100
Memory overestimation (%)

Re
sp

on
se

 ti
m

e
(s

)

(b) Filtering response time using a fixed interval range.

100%
overestimation

0%
overestimation

2.5e+05

5.0e+05

7.5e+05

1e+05 2e+05 3e+05
Average baseline response time (s)

Ac
tu

al
 re

sp
on

se
 ti

m
e

(s
)

Memory Overestimation 0% 25% 50% 75% 100%

(c) Using trend line to derive the response time.

Figure 7.1 Correlating memory overestimation to response time (example with 50%
large jobs and 0% large nodes).

7.2 Results 103

7.2 Results
Here we evaluate and discuss in more detail the effects of job requests that may
overestimate memory on the system performance and user response time. We analyse
the difference it makes to the users being perfectly accurate by specifying their requests,
and what happens to the requests on the system. The details for the configuration of
our simulated environment, methodology used for input generation, and its distribution
applied in our experiments are listed in Chapter 5.

7.2.1 System Job Throughput

Figure 7.2 presents the throughput of the system, in jobs per second, as a function of
the memory demand overestimation, across all scenarios. We notice that, in all cases,
system throughput drops as the overestimation increases. Even though for low degrees
of overestimation, the impact on throughput is modest, the degradation increases with
the mismatch between the system and the job mix, reaching almost 40%. We, therefore,
conclude that, from the system operator’s perspective, effective system utilization
requires that the jobs generally have accurate estimations of their memory demands.

System 0% Large System 15% Large System 25% Large

Jobs Large 50%
Jobs Large 75%

Jobs Large 100%

0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60

0.000

0.002

0.004

0.006

0.000

0.002

0.004

0.006

0.008

0.000

0.002

0.004

0.006

Memory overestimation (%)

Th
ro

ug
hp

ut
 (j

ob
s/

se
c)

Figure 7.2 System throughput (y-axis) when all jobs overestimate memory require-
ments by the same percentage (x-axis).

7.2 Results 104

7.2.2 System Job Response Time

Figure 7.3 shows the average response time when all jobs overestimate the memory
demands by the same amount. Following a similar trend as the decrease in throughput,
the response time increases, showing that the system’s response time is impacted as a
whole when all jobs overestimate their requests. For such a scenario, we notice that
when all users are accurate in specifying the memory usage, it would benefit the whole
system, because it would decrease the load on the system in queuing time due to the
lack of resources. Consequently, the system would run more efficiently by decreasing
overall response time and increasing overall throughput.

System 0% Large System 15% Large System 25% Large

Jobs Large 50%
Jobs Large 75%

Jobs Large 100%

0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60

0
1
2
3
4
5

0

1

2

3

0

1

2

Memory overestimation (%)

N
or

m
al

iz
ed

 re
sp

on
se

 ti
m

e

Figure 7.3 Normalized response time (y-axis) when all jobs overestimate memory
requirement by the same amount (x-axis).

7.2.3 User Job Response Time

Each plot in Figure 7.4 shows the average response time (𝑦-axis) as a function of
the baseline response time (𝑥-axis) for the jobs of two types of users. The data is
obtained following the methodology described in Section 7.1.2. The 0% line is for
a “diligent” user who accurately determines the memory consumption whereas the
100% line is for a “careless” user whose prediction is twice the actual consumption.

7.2 Results 105

Results are shown in a 3 × 3 grid, corresponding to the three different systems and job
mixes. Figure 7.4 plots the actual average response time, whereas Figure 7.5 plots the
normalized response time.

We see in each scenario a large increase in response time, compared with the
baseline (represented by the black line). We notice, as expected, that in all scenarios
the response time is impacted even for the diligent user, whose jobs do not overestimate
the memory demands. For 0% large node system, where disaggregation is more often
used to accommodate the job mixes, we perceive a slight increase in response time when
the job doubles its request. However, there is little or no difference in the response
time when we start adding large nodes to the system. We observe that being accurate
in a scenario where other users are not, provides a small benefit to a single user, whose
jobs will be impacted by the load the other users create on the system due to their
overestimation.

System 0% Large System 15% Large System 25% Large

Jobs Large 50%
Jobs Large 75%

Jobs Large 100%

0.0
e+

00

2.5
e+

05

5.0
e+

05

7.5
e+

05
0e

+0
0

2e
+0

5
4e

+0
5

6e
+0

5
0e

+0
0

2e
+0

5
4e

+0
5

6e
+0

5

2e+05

4e+05

6e+05

3e+05

6e+05

9e+05

0.0e+00

5.0e+05

1.0e+06

1.5e+06

2.0e+06

Average baseline response time (s)

Av
er

ag
e

ac
tu

al
 re

sp
on

se
 ti

m
e

(s
)

Memory Overestimation 0% 100%

Figure 7.4 Individual job response times increase when the users overestimate job
memory demands, but memory overestimation has little effect on response times (+0%
curves vs +100% curves).

7.3 Conclusion 106

System 0% Large System 15% Large System 25% Large
Jobs Large 50%

Jobs Large 75%
Jobs Large 100%

0.0
e+

00

2.5
e+

05

5.0
e+

05

7.5
e+

05
0e

+0
0

2e
+0

5
4e

+0
5

6e
+0

5
0e

+0
0

2e
+0

5
4e

+0
5

6e
+0

5

2

3

4

5

6

2.5

3.0

3.5

4.0

2.00

2.25

2.50

2.75

3.00

Average baseline response time (s)

N
or

m
al

iz
ed

 a
ve

ra
ge

 a
ct

ua
l r

es
po

ns
e

tim
e

Memory Overestimation 0% 100%

Figure 7.5 Normalized figures for individual job response times.

7.3 Conclusion
Disaggregated memory is under development as a way to provide a flexible fine-grained
allocation of physical memory. Users of an HPC system supporting disaggregated
memory would likely be expected to estimate their job’s memory demands. In this
Chapter, we investigated how the system’s overall throughput and response time would
be affected, according to various assumptions on the user’s ability to predict memory
consumption. We find that even when there is a large effect on system throughput
(-25%) and response time (5× higher), there is a very little direct incentive for the
users to be accurate in their estimates, with only an 8% increase in response time. We
make a step towards understanding how to bring disaggregated memory to HPC, by
demonstrating that users should receive incentives to provide accurate memory usage
estimates. These incentives could translate to an increase in priority, the number of
simultaneous running jobs, or larger core–hour allocations.

CHAPTER 8

Dynamic Memory Provisioning on Disaggregated
HPC Systems

In the previous Chapter we investigated how the system is affected by the users’
ability to estimate the peak memory consumption of their jobs. However, HPC

applications have widely varying per-node memory footprints due to diverse application
characteristics, differing problem sizes, and strong scaling [2, 6, 7]. Imbalanced memory
usage can happen across compute nodes and time in a job [11]. The system’s resources
are severely underutilized when the system is not running its worst case workloads,
first because many HPC systems do not allow sharing resources. Second, due to
homogeneously configured nodes in the current systems [11, 56], which usually are
overprovisioned as a temporary solution to allow most of the workloads to fit within
the resources of a single node [32, 55, 35].

In a typical HPC cluster architecture, memory is tightly coupled to the CPUs
running the jobs, leading to stranded memory capacity and inefficient use of the
memory resources. In fact, 25% to 76% of the total memory capacity typically
remains idle [56, 10, 55, 68]. Disaggregated memory offers a way to improve memory
utilization, as memory becomes a pool that can be dynamically composed to match
the needs of the workloads [32]. It enables fine-grained allocation of memory capacity
to jobs [13, 14, 2, 8, 10, 26], while maintaining the cost-effectiveness and scalability of
a cluster architecture [55].

HPC job schedulers generally allocate resources statically [11], so disaggregated
memory resource management systems require the user to specify the peak memory
demands at submission time [40, 10, 11]. It is difficult for users to know the precise
maximum memory footprint, and they have the incentive to overestimate this figure
to avoid an out-of-memory error, which would terminate the job [36–38, 2]. In the

108

previous Chapter, we investigated the incentive for users of a disaggregated memory
system to provide accurate memory estimates. We showed a tragedy of the commons
effect: even when a 60% overestimation increases a user’s total time from submission
to completion (the response time) by just 8%, the result of everybody doing so can be
a 5 times increase in response time and 25% reduction in throughput.

In this Chapter, we make a case for dynamic reallocation of disaggregated memory.
While we see a small benefit from the difference between the job’s peak and average
memory consumption, there is a large benefit from the difference between the job’s
peak memory consumption and the memory demand that the user would specify in the
job submission. We propose a strategy for dynamic memory allocation that reclaims
overallocated memory and we evaluate the policy using the BSC Slurm simulator [57].
The simulation approach allows work to proceed before the availability of a large-scale
HPC system with disaggregated memory and complete software stack, as well as
enabling rapid evaluation of multiple scenarios without occupying a real system.

We find that even assuming a conservative approach where the users correctly
estimate their maximum memory usage, system performance increases by up to 12%.
When memory demands are overestimated by +60%, the improvement in performance
for an underprovisioned system is up to 18%. Moreover, employing the dynamic
approach results in equivalent performance to the baseline while using fewer resources,
specifically 40% less memory provisioning for comparable throughput, within 5%.

Dynamic resource assignment has been explored in the context of malleability [33, 34,
106]. Unlike approaches for malleability, our approach does not need any modifications
to the application. Other studies investigate disaggregated memory but are done at a
relatively small scale [31, 32]. In contrast, our simulation approach has allowed the
evaluation to be performed on up to 1490 nodes. A more extensive comparison with
related work is in Chapter 3.

The contributions of this Chapter can be found in our paper [42] under submission.
In summary, the major contributions of this Chapter are:
1 We extend Slurm’s memory allocation policy and BSC’s Slurm simulator to support

disaggregated memory with dynamic memory reallocation.
2 We evaluate a set of simulated scenarios using synthetic and real-world traces and

investigate how the job memory allocation affects overall system throughput, response
time, utilization, and the cost–benefit in HPC systems.
3 We demonstrate that dynamic memory assignment delivers improvements up to 18%

in throughput, 38% in throughput per dollar, and up to 69% reduction in job response

8.1 Dynamic Memory Allocation Policy 109

time (median), compared to a static policy, when there are imbalanced memory usage
and overestimated demands on underprovisioned systems.

8.1 Dynamic Memory Allocation Policy
We enhanced BSC’s Slurm simulator, extended for disaggregated memory presented in
Chapter 6, to support dynamic memory allocation. This allowed us to develop and
evaluate the dynamic memory allocation policy without requiring a large-scale dedicated
HPC system with disaggregated memory (which is impractical as the technology is
still in its infancy). Figure 8.1 depicts our memory allocation scheme in the context
of the Slurm resource manager. The scheme is divided into the Monitor, Decider,
Actuator, and Executor modules, and it works as follows. The initial allocation of a job
is done in the same way as presented in Chapter 6, based on the memory request in
the job’s submission script. But once the job begins, its actual memory consumption
is monitored over time, by the Monitor module in Slurmd, which runs on every node.
The memory usage information is collected by the system for all running jobs. Prior
works [78, 75] have already demonstrated low overhead for data collection to track job
executions, with sampling intervals on the order of seconds. In our work, we update
the memory usage on average by every 5 minutes. The usage information is passed to
the Slurm controller, which updates the job memory allocations. In Section 9.1, we
provide an additional discussion regarding the Monitor module.

Actuator

Error

Terminate/
requeue job

Resize
disaggregated

resources

Slurmctld Slurmd

Update job
status

Monitor

Executor

Enforce
limits

Actual usage
Collect

system info

Decider

Compare usage
and allocated

resources

Figure 8.1 Proposed dynamic allocation of disaggregated memory and its integration
into Slurm.

8.1 Dynamic Memory Allocation Policy 110

When Slurm receives the updated current memory consumption for a particular
node in a job, it will make a decision based on the current allocation (Decider module).
Next, the memory will be allocated by the Actuator module. If the current memory
usage on the node is lower than the current allocation, the resource manager will
deallocate memory. It will deallocate remote memory before deallocating local memory.
On the other hand, if the new usage is higher than the current allocation, the resource
manager will allocate memory locally, if possible, then remotely if necessary. In practice,
when a job dynamically allocates memory (e.g., using the malloc or new functions), it
initially utilizes the memory that has been reserved for it by Slurm. However, if the
job exceeds the reserved memory, it will be temporarily blocked, and Slurm will search
for available memory capacity within the entire system. Once found, the additional
memory will be allocated and assigned to the job, ensuring its continued execution.
The idea is to maximize the local-to-remote ratio, thus decreasing the impact of remote
memory accesses. Finally, the controller will update the job’s access to physical memory
on the node using the Executor module, which runs on each node. This module will
reset memory capacity constraints available to the job locally and remotely.

We assume the system has a proper allocation management that will prioritize local
memory rather than remote memory. Therefore, it should have an efficient mechanism
for moving the accessed data to the local memory, while unused data will be in the
remote region. An important management question is what to do when the system
runs out of memory. Dynamic memory allocation intentionally allows the peak memory
demands of the running jobs to exceed the system’s total physical memory. When
a job increases its memory usage, the system may not have enough free memory to
satisfy its needs. An invalid approach would be to block the job until memory becomes
available, but this would clearly risk deadlock.

Two valid approaches for dealing with jobs running out of memory are namely:
Fail/Restart (F/R) and Checkpoint/Restart (C/R). In both approaches, the Actuator
terminates the job, releases its resources, and resubmits the job to execute later. F/R
restarts the job from the beginning whereas C/R restarts from a recent checkpoint.
We may expect C/R to perform better, but it is more complex. Most C/R libraries
require the application to control checkpointing and restart, and it is impractical to
checkpoint in response to a failed memory allocation and restart from an arbitrary
backtrace. Checkpointing, therefore, has to be done periodically at defined points in
the execution. We found that out-of-memory errors at the system level are rare. In

8.2 Dynamic Memory Allocation in the BSC Slurm Simulator 111

fact, in the most extreme scenario,1 less than 1% of jobs fail due to insufficient memory.
We conclude that F/R is sufficient, and present all results using the F/R approach.

8.2 Dynamic Memory Allocation in the BSC Slurm
Simulator

Figure 8.2 shows our approach to evaluate the dynamic allocation of disaggregated
memory using BSC’s Slurm simulator. Our modifications are depicted as orange
boxes. The functions that are partially implemented or adapted to run in a simulated
environment rather than a real system are represented as dotted boxes. It worths
mention that the scheme depicted in this Figure deals with jobs already running in the
system, therefore they are subject to memory usage variation and dynamic memory
management. On the other hand, Figure 6.3 demonstrates the initial static scheduling
and resource allocation of jobs submitted to our disaggregated approach.

In this simulated environment, the Decider module receives the memory usage
from the offline memory usage trace (details on Section 5.2), rather than periodically
receiving the memory status from the nodes in the cluster. This step mimics the
Monitor module feeding the current memory usage to the dynamic memory allocation
policy to enforce the memory usage in case a job exceeds its memory allocation. Our
extension works by executing the following steps: once the system has jobs running,
the simulator will calculate at which simulated time it must issue commands to update
the jobs. To calculate the expected simulation time it uses the job’s progress, which is
its elapsed running time. Since multiple jobs run concurrently, the simulator will use
the job’s earliest progress to update the timer to enforce the new usage in the system.

Once the simulation reaches a particular time, it issues commands to update the
jobs whose progress is within the period. A command specifies the node identification
and its new memory usage. The resource manager then receives a list with the job and
usage of each node to apply the new allocation. The Actuator module then allocates
or deallocates memory to match the node’s current memory usage. We consider the
memory demand to be the maximum memory usage in the time period between the
current progress and the next update, as represented in the original trace. Next,
the Actuator module applies the contention model to update the simulation and job
duration, and the calculated job progress is sent to the Executor module. Since the
simulated Slurmd daemon is a simplified version that emulates the job execution for

1100% large jobs, 50% system, +100% overestimation (see Chapter 5).

8.3 Allocation Policies 112

all nodes in the system, it only updates the job duration and the queue of jobs being
simulated instead of actually reconfiguring memory capacity locally and remotely.

Trace

sim_mgr

slurmctld slurmd

SLURM
logs/outs

Shared
Memory

Individual
job's & system's

metrics

Sync
SLURM

API
(sbatch)

SLURM
simulator

slurm.conf

Monitor

Slurmctld Slurmd

Usage traceDecider

Actuator Slowdown
model

Send job
duration

Remote memory access model

Executor Simulate job

Figure 8.2 Proposed dynamic allocation of disaggregated memory and its integration
into BSC Slurm simulator. The scheme considers jobs already running.

8.3 Allocation Policies
We present our results evaluating the following memory allocation policies:

• Baseline: no disaggregated memory (each job has exclusive access to all resources
on the node).

• Static: disaggregated memory with fixed memory allocation specified in the job
submission (Chapter 6).

• Dynamic: disaggregated memory with dynamic memory allocation policy (Sec-
tion 8.1).

8.4 Results 113

8.4 Results

8.4.1 System Throughput (Jobs per Second)

Each plot in Figure 8.3 shows the normalized throughput, in jobs completed per second,
on the 𝑦-axis, as a function of the system’s total amount of provisioned memory, on
the 𝑥-axis. The throughput is normalized by dividing the throughput by that of the
baseline approach (no disaggregation) on a system with 100% memory (rightmost
point on the 𝑥-axis). The total system memory capacity is normalized by dividing
it by the total memory capacity of a 100% large node system. The panels in the
left column correspond to +0% overestimation, i.e., the users specify the exact peak
memory footprint, for every job, at job submission time. The panels in the right
column correspond to a more realistic +60% overestimation. The rows show different
proportions of large jobs for the synthetic trace, together with the Grizzly trace at the
bottom.

When the demand for memory consumption is low, e.g. in the top-left panel
corresponding to +0% overestimation (left) and 0% large jobs (top), the system
memory can be reduced to 25% (32 GB per node instead of 128 GB per node), without
any impact on throughput for the disaggregated approaches. Nevertheless, since the
normal jobs require up to 64 GB per node, once the memory provisioning goes below
64 GB per node (50% total system memory), the baseline (no disaggregated memory)
approach becomes unable to run some of the jobs, therefore not showing bars below
50% system. As the proportion of large jobs increases, along the left column, memory
has an increasing effect on system throughput. We see a large difference between
the baseline and static approaches, and up to 12% difference between the static and
dynamic approaches. By reclaiming most of the unused memory from the jobs, so
that each job’s average memory provisioning matches its average (not peak) memory
demands, more jobs are able to run concurrently.

In the right column of the Figure, the peak memory footprint is overestimated by a
more realistic +60%. In this case, the baseline approach is unable to execute all the
jobs, so results are only shown for the two disaggregated memory policies. We also see
a significant difference between the static and dynamic approaches. For example, with
15% large jobs and a system with 25% total memory, the dynamic approach achieves
throughput over 95%, which is 18% above that of the static approach. In summary,
the largest benefit from the dynamic approach is seen for underprovisioned systems

8.4 Results 114

with a high number of large jobs and also for scenarios in which the users overestimate
their memory demands.

60%
O

verestim
ation

Jobs Large 0%

60%
O

verestim
ation

Jobs Large 15%

60%
O

verestim
ation

Jobs Large 25%

60%
O

verestim
ation

Jobs Large 50%

0%
O

verestim
ation

Jobs Large 0%

0%
O

verestim
ation

Jobs Large 15%

0%
O

verestim
ation

Jobs Large 25%

0%
O

verestim
ation

Jobs Large 50%

25 28 31 37 43 50 57 62 75 8710
0 28 31 37 43 50 57 62 75 8710

0

25 28 31 37 43 50 57 62 75 8710
0 25 28 31 37 43 50 57 62 75 8710

0

25 28 31 37 43 50 57 62 75 8710
0 25 28 31 37 43 50 57 62 75 8710

0

25 28 31 37 43 50 57 62 75 8710
0 25 28 31 37 43 50 57 62 75 8710

0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Total system memory (%)

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t (

jo
bs

/s
ec

)

Baseline (no disaggregated memory)
Static disaggregated memory
Dynamic disaggregated memory

Figure 8.3 Normalized throughput (𝑦-axis) for each memory configuration (𝑥-axis)
for various job mixes. The left column has +0% memory overestimation and the
right column has +60% overestimation. Bold 𝑥-axis labels identify overprovisioned
memory systems. Missing bars in the plots indicate there are not enough large memory
nodes to run all jobs. The largest benefit from the dynamic approach is seen for
underprovisioned systems with high numbers of large jobs. Continues on the next page.

8.4 Results 115

60%
O

verestim
ation

Jobs Large 75%

60%
O

verestim
ation

Jobs Large 100%

60%
O

verestim
ation

G
rizzly trace

0%
O

verestim
ation

Jobs Large 75%

0%
O

verestim
ation

Jobs Large 100%

0%
O

verestim
ation

G
rizzly trace

37 43 50 57 62 75 87 10
0 37 43 50 57 62 75 87 10

0

28 31 37 43 50 57 62 75 8710
0 37 43 50 57 62 75 87 10

0

25 28 31 37 43 50 57 62 75 8710
0 31 37 43 50 57 62 75 87 10

0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Total system memory (%)

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t (

jo
bs

/s
ec

)

Baseline (no disaggregated memory)
Static disaggregated memory
Dynamic disaggregated memory

Figure 8.3 Continued: Normalized throughput (𝑦-axis) for each memory configuration
(𝑥-axis) for various job mixes. The left column has +0% memory overestimation and
the right column has +60% overestimation. Bold 𝑥-axis labels identify overprovisioned
memory systems. Missing bars in the plots indicate there are not enough large memory
nodes to run all jobs.

8.4.2 Job Response Time

Figure 8.4 shows the Empirical Cumulative Distribution Function (ECDF) of the job
response times (waiting time plus runtime). The 𝑥-axis is the response time on a
logarithmic scale and the 𝑦-axis is the cumulative empirical probability, from 0 to 1.
We divide the results into three scenarios: overprovisioned (when the job mix demands
fewer large nodes than is available), matching (job mix demands an equal number
of large nodes), and underprovisioned (job mix demands more large nodes than is
available). For +0% overestimation (top row), all three scenarios show little difference
in performance between the static and dynamic disaggregated memory approaches,

8.4 Results 116

with a maximum difference in quantile response time of 5%. For +60% overestimation
(bottom row), the matching and underprovisioned systems show a reduced response
time for the dynamic approach, as jobs are able to be scheduled more quickly, leading
to a shorter waiting time in the queue. For the underprovisioned system, the median
response time (𝑦-axis equals 0.5) is reduced by 69%. This is because the dynamic
approach releases unused resources and allows jobs to start earlier, therefore decreasing
the job response times.

Overprovisioned Match Underprovisioned

0%
O

verestim
ation

60%
O

verestim
ation

1e
+0

1
1e

+0
3

1e
+0

5
1e

+0
1

1e
+0

3
1e

+0
5

1e
+0

1
1e

+0
3

1e
+0

5

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Response time (s)

EC
D

F

Static disaggregated memory

Dynamic disaggregated memory

Figure 8.4 Empirical cumulative distribution of response time for different systems and
job mixes. For +60% overestimation and underprovisioned systems (bottom right), the
dynamic approach has a 69% lower median response time (note: logarithmic 𝑥-axis).

8.4.3 Cost–Benefit Analysis

Figure 8.5 shows the results of the cost–benefit analysis, assuming the component costs
given in Table 5.2. The 𝑦-axis is the throughput (jobs per second) per dollar and the
𝑥-axis is the percentage of large jobs. As before, the top row is for +0% overestimation
and the bottom row is for +60% overestimation. Different system configurations are
shown in different panels from left to right. The conservative approach is a system
with 100% memory provisioning (128 GB per node), shown in the left-hand plots.

Depending on the expected memory demands of the jobs during the production,
the operator must choose a memory provisioning, which corresponds to choosing one

8.4 Results 117

of the panels from left to right. If it is expected that most jobs will have small memory
demands, then the demand will be for 0% large jobs, which is the leftmost point on
the 𝑥-axis of each panel. Choosing the 25% memory (top-right panel), rather than the
100% memory (top-left panel) improves throughput-per-dollar by 8%, which is seen
by comparing the left-most datapoint in the two panels. But the underprovisioned
system is sensitive to the job mix, because, during periods with high proportions of
large memory jobs, the throughput drops dramatically, which is seen by the slope of
the curve. The cost–benefit calculations for the static and dynamic approaches are
similar, but the dynamic approach consistently achieves slightly better throughput by
up to 8%. With a realistic +60% overestimation in job memory demands, seen in the
lower row of panels, the static approach has a much steeper fall off in throughput due
to large memory jobs, while the dynamic approach has behavior that is roughly the
same as in the top row. The gentler fall off for the dynamic approach reduces the risk
of provisioning a system with less memory and it improves the throughput per dollar
by up to 38%.

Sys 100% Sys 75% Sys 50% Sys 25%

0%
O

verestim
ation

60%
O

verestim
ation

0 25 50 75 10
0 0 25 50 75 10

0 0 25 50 75 10
0 0 25 50 75

4e-08

6e-08

8e-08

4e-08

6e-08

8e-08

Jobs Large (%)

Th
ro

ug
hp

ut
/C

os
t

Static disaggregated memory

Dynamic disaggregated memory

Figure 8.5 Cost–benefit analysis: throughput per cost (𝑦-axis) as a function of the job
mix (𝑥-axis). The dynamic approach has a gentler drop in throughput when memory
demand is high, reducing the risk of memory underprovisioning.

8.4 Results 118

8.4.4 Minimizing Memory to Achieve Defined Throughput

Figure 8.6 shows the amount of resources necessary to keep the system throughput at
a desired threshold (95% of the baseline throughput). We see that the static approach
needs more resources to meet the threshold when we increase the overestimation.
On the other hand, the dynamic approach can reach 95% of the throughput using
further underprovisioned systems even doubling the memory demands. In the best case,
the dynamic achieves the threshold saving almost 40% more memory than the static
approach. The dynamic approach is able to maintain close to maximum throughput
with much fewer resources even in the presence of overestimation.

5757

3737

57

75

3737

57

75

37
43

57

75

37
43

57

87

37
43

57

87

37

50
5757

3737

62

75

3737

62

75

37
43

62

75

43
50
57

87

43
50

75

87

43

57

75

62

3737

62

75

37
43

7575

43
50

75

87

43
50

75

87

43
50

75

87

43

57

7575

3737

7575

37
43

75

87

43
50

8787

43
50

75

87

43

57

75

100

43

62

100

75

4343

8787

5050

87

100

50
57

8787

50
57

87

100

57
62

100

50

75

0% 25
%

50
%

60
%

75
%

10
0%

Memory Overestimation

To
ta

l s
ys

te
m

 m
em

or
y

(%
)

Static disaggregated memory Dynamic disaggregated memory

Figure 8.6 System resource provisioning (𝑦-axis) as a function of the memory demand
overestimation (𝑥-axis) to achieve 95% of the fully provisioned throughput. Results
are shown for synthetic trace with 50% large jobs.

8.4.5 System Utilization of Memory and CPU

Figure 8.7 shows four scatter plots of system memory utilization on the 𝑦-axis vs.
system CPU utilization on the 𝑥-axis. System CPU utilization is the fraction of cores
in the system that are allocated to jobs. Both utilization figures are relative to the
resources of the system on which the trace was executed. The 𝑦-axis is the amount of
memory used by the application, rather than the potentially larger amount of memory
allocated to it, much of which may be unused. This provides a common basis for
comparison between the static and dynamic approaches.

8.4 Results 119

As shown in previous sections, the static and dynamic approaches have similar
performance for a match or overprovisioned scenarios with no overestimation. Both
are constrained by CPU with moderated memory utilization. For the underprovisioned
scenarios dynamic approach have a slightly higher utilization. The difference between
the approaches is emphasized even more when the jobs overestimate memory demands.
The dynamic approach achieves higher utilization on both overprovisioned and under-
provisioned scenarios, as a result of releasing unused resources which are thus used
by jobs waiting in the queue. More jobs running in the system increase utilization
for both CPU and memory while decreasing the system’s waiting time. On the other
hand, the static approach will have lower utilization as it will keep unused memory
allocated, therefore preventing jobs to start in compute nodes that had their memory
exhausted by another job, decreasing CPU and memory utilization.

Overprovisioned Underprovisioned

0%
O

verestim
ation

60%
O

verestim
ation

0 25 50 75 100 0 25 50 75 100

0
25
50
75

100

0
25
50
75

100

CPU utilization(%)

M
em

or
y

ut
iliz

at
io

n
(%

)

Static disaggregated memory
Dynamic disaggregated memory

Figure 8.7 Average memory and CPU utilization. The dynamic approach has higher
memory utilization when memory is underprovisioned or overestimated.

8.4.6 Effect of Overestimation on Individual Job Response
Time

In Chapter 7 we identified a tragedy of the commons situation, which we reconsider
in Figure 8.8. The 𝑥-axis indicates the job response time in a baseline execution

8.4 Results 120

(with +0% overestimation) and the 𝑦-axis indicates the average job response time in a
modified execution. There are two kinds of users. The solid 0% line is for a “diligent”
user who accurately determines the peak memory footprint, whereas the dashed 100%
line is for a “careless” user whose memory demands are twice the actual consumption.
The red pair of lines is for the static allocation policy. The distance between the red
and black lines shows that the increase in response time doubles, and the similarity
between the two red lines indicates that both kinds of users suffer equally so there
is no incentive to be accurate. In opposition, the blue lines for the dynamic policy
demonstrate that overestimation of the jobs’ memory demands increases response time
by at most 10% since the system takes into account the actual memory consumption
rather than the memory demands. The response time of the dynamic approach is only
slightly affected by users overestimating their memory consumption.

System 50% Large System 75% Large System 100% Large

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0
0.0

0
0.2

5
0.5

0
0.7

5
1.0

0
0.0

0
0.2

5
0.5

0
0.7

5
1.0

0
0.0
0.5
1.0
1.5
2.0

Normalized average
baseline response time

N
or

m
al

iz
ed

 a
ve

ra
ge

ac
tu

al
 re

sp
on

se
 ti

m
e

Static disaggregated memory
Dynamic disaggregated memory

Memory Overestimation 0% 100%

Figure 8.8 Actual job response time (𝑦-axis) as a function of the job baseline response
time (𝑥-axis +0% overestimation). The response time of the dynamic approach is only
slightly affected by users overestimating the memory consumption, unlike the static
approach.

8.4.7 System Throughput vs. Overestimation

Figure 8.9 shows the throughput, on the 𝑦-axis, as a function of the system memory
capacity, on the 𝑥-axis. Running from top to bottom, each panel shows a different
amount of overestimation, from +0% to +100%. The left column is for the synthetic
trace with 50% large jobs and the right column is for the Grizzly trace.

8.4 Results 121

Jobs Large 50% Grizzly trace
0
%

O
ve

re
stim

a
tio

n
2
5
%

O
ve

re
stim

a
tio

n
5
0
%

O
ve

re
stim

a
tio

n
6
0
%

O
ve

re
stim

a
tio

n
7
5
%

O
ve

re
stim

a
tio

n
1
0
0
%

O
ve

re
stim

a
tio

n

25 28 31 37 43 50 57 62 75 87 10
0 37 43 50 57 62 75 87 10

0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Total system memory (%)

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t
(j

o
b
s/

se
c)

Baseline (no disaggregated memory)
Static disaggregated memory
Dynamic disaggregated memory

Figure 8.9 Effect of memory overestimation on throughput. Each panel is a different
overestimation factor, showing throughput (𝑦-axis) vs total system memory (𝑥-axis).
Missing bars in the plots indicate there are not enough large memory nodes to run all
the jobs. Compared with the static approach, the dynamic approach is less affected by
memory overestimation. Results continue on the next page.

8.4 Results 122

Jobs Large 0% Jobs Large 15% Jobs Large 25% Jobs Large 75% Jobs Large 100%

0
%

O
ve

re
stim

a
tio

n
2

5
%

O
ve

re
stim

a
tio

n
5

0
%

O
ve

re
stim

a
tio

n
6

0
%

O
ve

re
stim

a
tio

n
7

5
%

O
ve

re
stim

a
tio

n
1

0
0

%
O

ve
re

stim
a
tio

n

25 28 31 37 43 50 57 62 75 8710
0 25 28 31 37 43 50 57 62 75 8710

0 25 28 31 37 43 50 57 62 75 8710
0 25 28 31 37 43 50 57 62 75 8710

0 28 31 37 43 50 57 62 75 8710
0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Total system memory (%)

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p

u
t
(j

o
b
s/

se
c)

Baseline (no disaggregated memory)
Static disaggregated memory
Dynamic disaggregated memory

Figure 8.9 Continued: Effect of memory overestimation on throughput. Each panel is
a different overestimation factor, showing throughput (𝑦-axis) vs total system memory
(𝑥-axis). Missing bars in the plots indicate there are not enough large memory nodes
to run all the jobs.

We observe that for the baseline case (+0% overestimation), the static and dynamic
approaches have similar performance, with the difference appearing when the system is
underprovisioned. However, the difference shows up when the jobs start to overestimate
their demands. It becomes more compelling when the systems are underprovisioned to
run the job mix (on 𝑥-axis systems below 75% total memory). The dynamic approach
experiences slowly the effects of overestimation compared to the static approach. We
can clearly see that having a mechanism to release unused memory is beneficial to the
system with fewer resources as it is able to run more jobs concurrently. For the worst
case (+100% overestimation) the difference between static and dynamic approaches is

8.4 Results 123

over 38% on a system with 37% of its total memory. In this scenario, the dynamic is
even able to keep the throughput over 80%. It demonstrates that a dynamic approach
is able to run higher load demands on fewer resources with better resource management,
therefore reducing the investments in resources.

8.4.8 Initial Memory Provisioning

In this Chapter, as it is common in most of the current HPC systems, we assume that
the system requires the user to express their memory demands at submission time, and
as a consequence, these demands are likely overestimated. In this section, we analyze
the opposite effect. At submission time, the system will proactively decrease the
memory request submitted by the user and the resource manager’s dynamic memory
management will handle the allocation based on the job’s usage. Figure 8.10 presents
the normalized throughput (𝑦-axis) as a function of the decreased memory requested
by all jobs (𝑥-axis) considering different job mixes and systems large node ratio. In
this experiment, we use as the starting point the scenario in which the jobs do not
overestimate (+0%) their demands, and then we uniformly decrease all jobs memory
requests at submission time.

Jobs Large 50% Jobs Large 75% Jobs Large 100%

Jobs Large 0% Jobs Large 15% Jobs Large 25%

0% 25% 50% 75% 100%0% 25% 50% 75% 100%0% 25% 50% 75% 100%

0.7

0.8

0.9

1.0

0.7

0.8

0.9

1.0

Decreasing in memory request

N
or

m
. T

hr
ou

gh
pu

t (
jo

bs
/s

ec
)

System % large ratio 0 15 25 50 75 100

Figure 8.10 Normalized throughput (𝑦-axis) as a function of the decreased memory
requested by all jobs (𝑥-axis) considering different ratios of large capacity nodes in the
system. Decreasing memory requests does improve performance.

8.4 Results 124

We can notice that there are no cases when decreasing the initial memory request
(going to the right on the 𝑥-axis) improves the performance. For job large mixes 0%,
15%, and 25% (top row), decreasing the memory request does not have an impact on
the overall performance even when the system is underprovisioned. The reason is that
the majority of the systems are overprovisioned to run these job mixes. The compute
nodes allocated to the jobs have enough memory to satisfy the job demands and its
execution, therefore they will not need to contend for remote memory capacity.

On the contrary, the findings indicate that when job demands exceed the system
provisioning in underprovisioned scenarios, the throughput decreases for larger job
mixes (50%, 75%, and 100% mixes) even if the submitted memory request is not
reduced (0% on the x-axis). However, if the system is provisioned to meet the memory
requirements of the job mix (matched or overprovisioned scenarios), decreasing the
memory request has little impact on overall performance. Nonetheless, we did observe
a slight decline in performance when the memory request was reduced, with reductions
of 1%, 4%, and 10% for the most extreme case (100% reduction in memory request on
a 0% large node system) in the bottom row of the graph.

Jobs Large 50% Jobs Large 75% Jobs Large 100%

0% 25% 50% 75%100% 0% 25% 50% 75%100% 0% 25% 50% 75%100%
0.000

0.005

0.010

0.015

0.020

0.0000

0.0005

0.0010

0.0015

0.0020

0e+00

2e-05

4e-05

6e-05

Decrease in memory request

 N
or

m
. f

ai
lu

re
s

pe
r j

ob
(a

ve
ra

ge
)

System % large nodes 0 15 25 50 75 100

Figure 8.11 Averaged normalized failure per job (𝑦-axis) as a function of decreasing
memory requests for all jobs (𝑥-axis) considering different ratios of large capacity nodes
in the system. The number of failures rises when there is a disparity between the
system and job mix, as well as when the initial memory request is decreased.

Figure 8.11 helps to explain the reason why decreasing the memory request at
submission time does not perform well for underprovisioned scenarios. It shows the
average normalized failure per job (𝑦-axis) as a function of the decreased memory
requested by all jobs (𝑥-axis). Only three scenarios consistently presented failures, as we

8.4 Results 125

can see in the Figure. It is evident that the greater the reduction in the memory request,
the greater the number of job failures, especially for systems that are underprovisioned
to handle the job mix. This effect can be attributed to the system being more aggressive
in initiating jobs with low initial memory allocation. Consequently, jobs with varying
memory requirements end up competing for remote memory allocation simultaneously,
resulting in some of them failing to allocate memory. These jobs are then terminated
and requeued for later execution, resulting in a higher rate of failures and a decrease
in the overall performance of the system.

8.4.9 Sharing of Memory Capacity in the System

Figure 8.12 summarizes the overall percentage of nodes sharing memory capacity over
time in the system (𝑦-axis) as a function of the total system memory capacity (𝑥-axis).
Each panel represents different job mixes submitted to the system, considering the
baseline execution case of +0% overestimation. We can observe that increasing the
memory capacity in the system (going to the right on the 𝑥-axis) will decrease the
percentage of nodes sharing memory, as the system will have more provisioned nodes
with enough resources to satisfy the job’s demands. Jobs will not need to go remotely
to allocate memory capacity, therefore the system will have better overall performance.
However, whenever the jobs are scheduled to less provisioned nodes in any system,
they will borrow memory capacity from remote nodes.

The static approach consistently has a higher percentage of nodes sharing memory
capacity than the dynamic approach. As an example, for all executions of the job large
mix 100% (bottom row and rightmost panel), the static approach has a median of 31%
of the nodes sharing memory, while for the dynamic approach, this percentage is 18.8%.
It translates to more than 40% fewer nodes sharing memory when the system uses the
dynamic approach. The highest percentage achieved is on the most underprovisioned
system (28% total memory) with a median of 59.4% for the static and 39.8% for the
dynamic approach. This difference is due to the fact that once the static approach
allocates memory to a job, it will be retained throughout its execution and consequently,
other jobs will have to share capacity in order to execute. On the other hand, using the
dynamic approach the system will release unused memory capacity from jobs during
their low usage period and likely share most of the capacity during their high usage
period.

8.5 Conclusion 126

Jobs Large 50% Jobs Large 75% Jobs Large 100%

Jobs Large 0% Jobs Large 15% Jobs Large 25%

25 28 31 37 43 50 57 62 75 8710
0 25 28 31 37 43 50 57 62 75 8710

0 25 28 31 37 43 50 57 62 75 8710
0

0

25

50

75

0

25

50

75

Total system memory (%)

N
od

es
 s

ha
rin

g
m

em
or

y
(%

)

Static disaggregated memory Dynamic disaggregated memory

Figure 8.12 Percentage of nodes in the system sharing memory capacity (𝑦-axis)
as a function of each memory configuration (𝑥-axis) considering different jobs large
mix (+0% overestimation). The static approach has a higher percentage of sharing
resources.

8.5 Conclusion
Disaggregated memory breaks the rigid boundaries between nodes to provide memory
as a system-wide pooled resource. State-of-the-art resource management systems for
disaggregated memory statically allocate memory to each job, so memory resources
management systems require the user to specify the job’s peak memory demand.
According to the memory demand specified at submission time, the allocated memory
will remain unchanged throughout the job’s entire execution.

This Chapter makes a case for a dynamic approach, which adapts the current alloca-
tion to the actual memory usage and reclaims much of the overallocated disaggregated
memory. Thus improving throughput and waiting time, and increasing throughput per
dollar by up to 38%. Furthermore, the presented approach also reduces the need for
the user to provide an accurate bound on the memory footprint. Our experiments are
based on publicly available traces, and all source code is available open source in the
hope that others reproduce and build upon our work.

Hoje longe, muitas légua
Numa triste solidão
Espero a chuva cair de novo
Pra mim vortar’ pro meu sertão

Luiz Gonzaga

Part IV:

Epilogue

127

CHAPTER 9

Conclusion

This Chapter summarizes the discussions and accomplishments achieved in this
thesis. We began this thesis by addressing a generic approach to predict perfor-

mance degradation due to the sharing of resources. The emerging proposal of a novel
disaggregated memory architecture to allow a flexible and fine–grained allocation of
memory capacity to compute nodes shifts the focus to sharing capacity, rather than
coherent sharing of data as in the traditional shared memory processors. Sharing
common memory devices or interfaces may incur an unsatisfactory loss of performance
because concurrent memory access requests can saturate the components.

Part II of this thesis presented a Slowdown based methodology to build a contention
model to predict the performance degradation that results from contention in remote
memory access. We enhanced the methodology by adding the concepts of smoothing
and read/write memory access ratio to create the correct sensitivity curve, in order to
increase the accuracy and similarity with real executions. Using the characterization of
an application’s sensitivity to contentious pressure from remote access to the memory
subsystem, we were able to predict an application’s performance in a pairwise execution
with 1.19% prediction error on average and 14.6% in the worst case.

In Part III of this thesis we explored disaggregated–memory–aware in the context of
HPC resource management. In this direction, we proposed an extension to the Slurm
resource manager to allocate memory capacity to jobs in a disaggregated memory
system and its evaluation at scale. Since research in job scheduling requires a simulation
platform that is both faster and less intrusive than running on a real system, we also
extended an existing Slurm simulator to support disaggregated memories and to account
for memory bandwidth contention in disaggregated memory leveraging our developed
Slowdown based method. Our results showed that depending on the level of imbalance
between the system and memory demands of scheduled jobs, memory disaggregation

9.1 Future Work 129

enables resource savings of up to 33% compared to the state–of–the–art resource
manager.

In sequence, we dove into the effects of memory demands on the system’s overall
throughput, response times, and efficiency. It is known that users must express
beforehand their resource demands when submitting jobs to HPC systems. The request
will be based on users’ knowledge or ability to estimate the resources necessary to run
the job. Consequently, they will likely overestimate their demands to avoid having
the job killed by running out of resources. According to various assumptions on the
user’s ability to predict memory consumption, we found that even when there is a
large effect on system throughput (-25%) and response time (5× higher), there is a
very little direct incentive for the users to be accurate in their estimates, with only an
8% increase in response time.

We further demonstrated that dynamic memory assignment delivers improvements
up to 18% in throughput, 38% in throughput per dollar, and up to 69% reduction in
job response time (median), compared to a static policy, when there are imbalanced
memory usage and overestimated demands on underprovisioned systems. Adapting the
actual memory usage reduces the need for the user to provide an accurate bound on
the memory footprint, therefore increasing the throughput and efficiency of the system.

9.1 Future Work
Disaggregated systems have been proposed to become the standard method to build
more efficient HPC infrastructures to achieve higher exascale performances. Although
in its infancy, simulations and analysis around this new architecture are important
to better understand disruptive architectural changes on future systems and to guide
future researches on design space exploration. The analysis carried out in this thesis will
become a valuable starting point for other studies as disaggregated systems continue
to evolve. The remainder of this Section describes some interesting ideas and proposes
new paths that would enhance the findings in this thesis.
Slowdown Based Methodology — Interesting avenues to build on this work in
the future include taking account of the multiple execution phases in a single run
of an application and reducing the need to profile them in advance. During the
development and execution of the methodology, we acknowledge the applications go
through different phases during a single run, which incurs dynamically varying levels
of contention. However, we use makespan as a metric of interest, thus it allows us to
analyze the problem on per–workload “average” granularity. Another enhancement to

9.1 Future Work 130

the methodology would be upgrading the contention model to account for other sources
of delay, i.e. networking and distance-dependent latency, that impact the application’s
performance when accessing the disaggregated memory thus making the model more
precise.

Additionally, for profiling unknown applications it could be possible during the
execution of the target application with an unknown interfering application, to pause
the target application for a short time to collect the performance counters of the
interfering application on–the–fly and calculate its remote memory bandwidth. At that
point, we would be able to predict the performance of the target application. However,
this approach would have to be dynamically repeated throughout the execution to
account for the different phases of the interfering application.

It is also important to point out that the slowdown method is only used for validation
in our methodology. Its adaptation to a new architecture would be considerably
straightforward since the complexity of the methodology scales linearly with the
number of applications (as mentioned in Chapter 4). Furthermore, the numbers used
in our model could also be calibrated to reflect the performance of the applications on
the new system whenever the platform changes.
Disaggregated Memory Policies — A lot of research work around the RJMS
has been carried out to solve problems related to the current state–of–art on HPC
systems and their evolving memory hierarchy, but disaggregated systems are still under
development. Moreover, allocation policies are not well understood in these novel
disaggregated memory systems, making it important to investigate them to discover
the best algorithm or heuristics to be employed for both performance and efficiency.
In this context, it could be interesting to perform a broader design exploration and
an evaluation at scale for new scheduling and allocation policies considering different
types of components and layouts in the memory subsystems and the impact of their
access speed on the application performance.
Pricing Schemes and System Cost — Access to large-scale HPC infrastructures
usually requires the submission of proposals to undergo a peer-review process describing
computational resources, and usually, resource usage is charged based on core-hours.
From an operator’s point of view, an interesting analysis would be analyzing fair pricing
models to access disaggregated systems considering the contention experienced by the
users due to the sharing of resources and the system’s overall performance. As in cloud
service providers, billing usage in HPC centers could follow the concepts of on-demand
resource provisioning to reduce investment. We also envisage that the simulations are
a very interesting approach to aid procurement decisions when building large HPC

9.1 Future Work 131

systems. It would be used to realize a more in-depth analyze of architectural options
and decide what would be the best cost-benefit infrastructure to be deployed for the
workload characteristics running in the center.
Job Trace Methodology — The study and design of computer systems require
good models of the workload because it has a large effect on the observed performance.
Therefore, realistic workloads are crucial to determine performance in practice. The
need for realistic workloads is important in evaluating supercomputers because they
are very expensive, therefore it is rarely an option to conduct extensive experiments
in production. For our analysis, we presented a methodology to generate and use
synthetic traces as well as the memory profile of existing systems. Usually profiling logs
are sensitive data for HPC and research centers, so it could be interesting providing
new workload models that would make possible the creation of new workload traces
that are statistically similar to the memory profile of common applications that run
on existing HPC systems. More detailed memory profile traces would be interesting
to analyze the effects of memory hierarchic and memory demands on the designed
infrastructures.

Dynamic Monitor Module — System’s continuous measurement is an important
aspect of an HPC infrastructure to detect and solve problems. Monitoring the job’s
performance using hardware performance counters with negligible overhead allows
the operator or system software to correctly assess the system’s state and step in for
efficient resource utilization. Frameworks as LDMS [78] already demonstrated low
overhead and good scalability to thousands of nodes with sampling intervals on the
order of seconds. In our envisaged scenario, the agent on each node not only monitors
the state of the application but also intercepts memory allocations beyond the actual
node allocation. It intercepts and forwards the info with low latency to the controller
which is able to expand the job’s allocated memory capacity. Interesting avenues in this
direction are analyzing the impact of the granularity in which the controller allocates
the memory to maximize job and system’s efficiency.

In summary, this thesis has demonstrated a methodology to build a contention
model to predict performance degradation due to the interference of memory bandwidth
for single and multi node applications and an evaluation at scale of a disaggregated–
memory–aware job scheduler. We believe our study provides valuable insights into the
importance of design space exploration for disaggregated memory HPC systems. We
demonstrate that by understanding disruptive architectural changes on future systems
and the demands of the workloads, system provisioning can be carefully designed to
achieve the best cost–benefit.

APPENDIX A

Sensitivity Curves

In this Appendix, we present the sensitivity curves for all single and multi node
applications profiled in Part II of this dissertation. Specifically, Part II of this thesis
focused on presenting the performance prediction methodology to build the contention
model used in our simulations. In this regard, we introduced a Slowdown based method
that correlates interfering memory bandwidth and the application’s performance. We
also showed that contention is sensitive to the ratio between read and write memory
access.

133

stream triad

miniFE heat svmrfe lu sp ocean

prk2 ft HPCCG cg lud ua

cfd fluidanimate amg2013 lulesh facesim streamcluster

fft waternsquared xspecfem3D ferret SSCA fmm

blackscholes waterspatial bt-mz.A.1 freqmine barnes bt-mz.B.1

particlefilter qsort hop raytrace sparseLU hydro

mandel ep kmeans swaptions bodytrack lavaMD

0 5 10 15 20 0 5 10 15 20

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

0.6
0.7
0.8
0.9
1.0

0.6
0.7
0.8
0.9
1.0

0.6
0.7
0.8
0.9
1.0

0.6
0.7
0.8
0.9
1.0

0.6
0.7
0.8
0.9
1.0

0.6
0.7
0.8
0.9
1.0

0.6
0.7
0.8
0.9
1.0

0.6
0.7
0.8
0.9
1.0

Interfering app remote memory bandwidth [GB/s]

Ta
rg

et
 a

pp
 p

er
fo

rm
an

ce
 (n

or
m

.)

Figure 1.1 Sensitivity curve for all single node applications profiled in this thesis.
Each line corresponds to a specific read/write ratio going from 50% Read to 100%
Read, with the lighter lines indicating a higher percentage of read.

134

sp-mz.C.x streamcluster streammpi

hydro lu-mz.C.x minife

amg2013 bt-mz.C.x hpccg

0 10 20 0 10 20 0 10 20

0.75
0.80
0.85
0.90
0.95
1.00

0.75
0.80
0.85
0.90
0.95
1.00

0.75
0.80
0.85
0.90
0.95
1.00

Interfering app remote memory bandwidth [GB/s]

Ta
rg

et
 a

pp
 p

er
fo

rm
an

ce
 (n

or
m

.)

Read ratio (%) 50 100

Interfering nodes 1 2 3 4

Figure 1.2 Sensitivity curve for all multi node applications profiled in this thesis. The
applications run using 4 nodes.

135

sp-mz.D.x streamcluster streammpi

hydro lu-mz.D.x minife

amg2013 bt-mz.D.x hpccg

0 10 20 0 10 20 0 10 20

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

Interfering app remote memory bandwidth [GB/s]

Ta
rg

et
 a

pp
 p

er
fo

rm
an

ce
 (n

or
m

.)

Read ratio (%) 50 100

Interfering nodes 1 8 12 16

Figure 1.3 Sensitivity curve for all multi node applications profiled in this thesis. The
applications run using 16 nodes.

136

streamcluster streammpi

hydro minife sp-mz.D.x

amg2013 bt-mz.D.x hpccg

0 10 20 0 10 20

0 10 20

0.8
0.9
1.0

0.8
0.9
1.0

0.8
0.9
1.0

Interfering app remote memory bandwidth [GB/s]

Ta
rg

et
 a

pp
 p

er
fo

rm
an

ce
 (n

or
m

.)

Read ratio (%) 50 100

Interfering nodes 1 14 16 21 24 28 31

Figure 1.4 Sensitivity curve for all multi node applications profiled in this thesis. The
applications run using 31 nodes. Hydro is the only application that runs using 28
nodes.

Tchau Tchau amor, Eu vou embora
Tchau tchau amor, Chegou a hora
De me despedir, E dizer adeus

Lairton

Part V:

Bibliography

137

References

[1] Antonios D Papaioannou, Reza Nejabati, and Dimitra Simeonidou. The benefits
of a disaggregated data centre: A resource allocation approach. In 2016 IEEE
Global Communications Conference (GLOBECOM), pages 1–7. IEEE, 2016.

[2] Vamsee Reddy Kommareddy, Amro Awad, Clayton Hughes, and Simon David
Hammond. Exploring allocation policies in disaggregated non-volatile memories.
In Proceedings of the Workshop on Memory Centric High Performance Computing,
pages 58–66. ACM, 2018.

[3] Carlos Vega, Jose Fernando Zazo, Hugo Meyer, Ferad Zyulkyarov, Sergio López-
Buedo, and Javier Aracil. Diluting the scalability boundaries: Exploring the
use of disaggregated architectures for high-level network data analysis. In 2017
IEEE 19th International Conference on High Performance Computing and Com-
munications; IEEE 15th International Conference on Smart City; IEEE 3rd
International Conference on Data Science and Systems (HPCC/SmartCity/DSS),
pages 340–347. IEEE, 2017.

[4] Mozhgan Mahloo, João Monteiro Soares, and Amir Roozbeh. Techno-economic
framework for cloud infrastructure: A cost study of resource disaggregation.
In 2017 Federated Conference on Computer Science and Information Systems
(FedCSIS), pages 733–742. IEEE, 2017.

[5] Howraa Mehdi Mohammad Ali, Taisir EH El-Gorashi, Ahmed Q Lawey, and
Jaafar MH Elmirghani. Future energy efficient data centers with disaggregated
servers. Journal of Lightwave Technology, 35(24):5361–5380, 2017.

[6] Darko Zivanovic, Milan Pavlovic, Milan Radulovic, Hyunsung Shin, Jongpil Son,
Sally A. Mckee, Paul M. Carpenter, Petar Radojković, and Eduard Ayguadé.
Main memory in HPC: Do we need more or could we live with less? ACM Trans.
Archit. Code Optim., 14(1):3:1–3:26, March 2017.

[7] Rajiv Nishtala, Paul Carpenter, and Xavier Martorell. Performance effects on
HPC workloads of global memory capacity sharing. In MULTIPROG, 01 2019.

[8] Georgios Zervas, Hui Yuan, Arsalan Saljoghei, Qianqiao Chen, and Vaibhawa
Mishra. Optically disaggregated data centers with minimal remote memory

References 139

latency: technologies, architectures, and resource allocation. Journal of Optical
Communications and Networking, 10(2):A270–A285, 2018.

[9] Bulent Abali, Richard J Eickemeyer, Hubertus Franke, Chung-Sheng Li, and
Marc A Taubenblatt. Disaggregated and optically interconnected memory: when
will it be cost effective? arXiv preprint arXiv:1503.01416, 2015.

[10] Ivy Peng, Roger Pearce, and Maya Gokhale. On the memory underutilization:
Exploring disaggregated memory on hpc systems. In 2020 IEEE 32nd Interna-
tional Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD), pages 183–190. IEEE, 2020.

[11] IB Peng, I Karlin, MB Gokhale, K Shoga, M Legendre, and T Gamblin. A
holistic view of memory utilization on hpc systems: Current and future trends.
Technical report, Lawrence Livermore National Lab.(LLNL), Livermore, CA
(United States), 2021.

[12] Peter X Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira, Sangjin Han,
Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker. Network requirements
for resource disaggregation. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), pages 249–264, 2016.

[13] Dimitris Syrivelis, Andrea Reale, Kostas Katrinis, Ilias Syrigos, Maciej Bielski,
Dimitris Theodoropoulos, Dionisios N Pnevmatikatos, and Georgios Zervas. A
software-defined architecture and prototype for disaggregated memory rack scale
systems. In 2017 International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS), pages 300–307. IEEE, 2017.

[14] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, and Kang G
Shin. Efficient memory disaggregation with infiniswap. In 14th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 17), pages
649–667, 2017.

[15] A Saljoghei, V Mishra, M Bielski, I Syrigos, K Katrinis, D Syrivelis, A Reale,
DN Pnevmatikatos, D Theodoropoulos, M Enrico, et al. dReDbox: Demon-
strating disaggregated memory in an optical data centre. In 2018 Optical Fiber
Communications Conference and Exposition (OFC), pages 1–3. IEEE, 2018.

[16] Yves Durand, Paul M Carpenter, Stefano Adami, Angelos Bilas, Denis Dutoit,
Alexis Farcy, Georgi Gaydadjiev, John Goodacre, Manolis Katevenis, Manolis
Marazakis, et al. Euroserver: Energy efficient node for european micro-servers.
In 2014 17th Euromicro Conference on Digital System Design, pages 206–213.
IEEE, 2014.

[17] Dimitris Syrivelis, Andrea Reale, Kostas Katrinis, and Christian Pinto. A software-
defined SoC memory bus bridge architecture for disaggregated computing. In

References 140

Proceedings of the 3rd International Workshop on Advanced Interconnect Solutions
and Technologies for Emerging Computing Systems, page 3. ACM, 2018.

[18] Kevin Lim, Yoshio Turner, Jose Renato Santos, Alvin AuYoung, Jichuan Chang,
Parthasarathy Ranganathan, and Thomas F Wenisch. System-level implications of
disaggregated memory. In IEEE International Symposium on High-Performance
Comp Architecture, pages 1–12. IEEE, 2012.

[19] Héctor Montaner, Federico Silla, Holger Froning, and José Duato. Memscale™:
A scalable environment for databases. In 2011 IEEE International Conference
on High Performance Computing and Communications, pages 339–346. IEEE,
2011.

[20] Pramod Subba Rao and George Porter. Is memory disaggregation feasible?:
A case study with Spark SQL. In Proceedings of the 2016 Symposium on
Architectures for Networking and Communications Systems, pages 75–80. ACM,
2016.

[21] Dhantu Buragohain, Abhishek Ghogare, Trishal Patel, Mythili Vutukuru, and
Purushottam Kulkarni. Dime: A performance emulator for disaggregated memory
architectures. In Proceedings of the 8th Asia-Pacific Workshop on Systems, pages
1–8, 2017.

[22] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. Legoos: A
disseminated, distributed OS for hardware resource disaggregation. In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
18), pages 69–87, 2018.

[23] Alvise Rigo, Christian Pinto, Kevin Pouget, Daniel Raho, Denis Dutoit, Pierre-
Yves Martinez, Chris Doran, Luca Benini, Iakovos Mavroidis, Manolis Marazakis,
et al. Paving the way towards a highly energy-efficient and highly integrated
compute node for the exascale revolution: the exanode approach. In 2017
Euromicro Conference on Digital System Design (DSD), pages 486–493. IEEE,
2017.

[24] Andy B Yoo, Morris A Jette, and Mark Grondona. Slurm: Simple linux utility
for resource management. In JSSPP, pages 44–60. Springer, 2003.

[25] Ana Jokanovic, Marco D’Amico, and Julita Corbalan. Evaluating slurm simulator
with real-machine slurm and vice versa. In 2018 IEEE/ACM Performance
Modeling, Benchmarking and Simulation of High Performance Computer Systems
(PMBS), pages 72–82. IEEE, 2018.

[26] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan, Steven K
Reinhardt, and Thomas F Wenisch. Disaggregated memory for expansion and
sharing in blade servers. In ACM SIGARCH Computer Architecture News,
volume 37, pages 267–278. ACM, 2009.

References 141

[27] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou Soffa.
Bubble-up: Increasing utilization in modern warehouse scale computers via
sensible co-locations. In MICRO, pages 248–259. ACM, 2011.

[28] Andreas De Blanche and Thomas Lundqvist. A methodology for estimating
co-scheduling slowdowns due to memory bus contention on multicore nodes. In
International conference on parallel and distributed computing and networks,
2014.

[29] David Eklöv, Nikos Nikoleris, David Black-Schaffer, and Erik Hagersten. Band-
width Bandit: Quantitative characterization of memory contention. In CGO
2013, 23-27 February, Shenzhen, China, pages 99–108. IEEE Computer Society,
2013.

[30] Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and Myoungsoo Jung. Direct
access,high-performance memory disaggregation with directcxl. In 2022 USENIX
Annual Technical Conference (USENIX ATC 22), pages 287–294, 2022.

[31] Christian Pinto, Dimitris Syrivelis, Michele Gazzetti, Panos Koutsovasilis, Andrea
Reale, Kostas Katrinis, and H Peter Hofstee. Thymesisflow: a software-defined,
hw/sw co-designed interconnect stack for rack-scale memory disaggregation. In
2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 868–880. IEEE, 2020.

[32] Panos Koutsovasilis, Michele Gazzetti, and Christian Pinto. A holistic system
software integration of disaggregated memory for next-generation cloud infras-
tructures. In 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud
and Internet Computing (CCGrid), pages 576–585. IEEE, 2021.

[33] Marco D’Amico, Ana Jokanovic, and Julita Corbalan. Holistic slowdown driven
scheduling and resource management for malleable jobs. In Proceedings of the
48th International Conference on Parallel Processing, page 31. ACM, 2019.

[34] Sergio Iserte, Rafael Mayo, Enrique S Quintana-Ortí, Vicenç Beltran, and An-
tonio J Peña. Efficient scalable computing through flexible applications and
adaptive workloads. In 2017 46th International Conference on Parallel Processing
Workshops (ICPPW), pages 180–189. IEEE, 2017.

[35] George Michelogiannakis, Benjamin Klenk, Brandon Cook, Min Yee Teh,
Madeleine Glick, Larry Dennison, Keren Bergman, and John Shalf. A case
for intra-rack resource disaggregation in hpc. ACM Transactions on Architecture
and Code Optimization (TACO), 19(2):1–26, 2022.

[36] Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski, Przemyslaw Zych, Przemys-
law Broniek, Jarek Kusmierek, Pawel Nowak, Beata Strack, Piotr Witusowski,
Steven Hand, et al. Autopilot: workload autoscaling at google. In Proceedings of
the Fifteenth European Conference on Computer Systems, pages 1–16, 2020.

References 142

[37] Mohammed Tanash, Brandon Dunn, Daniel Andresen, William Hsu, Huichen
Yang, and Adedolapo Okanlawon. Improving hpc system performance by predict-
ing job resources via supervised machine learning. In Proceedings of the Practice
and Experience in Advanced Research Computing on Rise of the Machines (learn-
ing), pages 1–8. 2019.

[38] Mohammed Tanash, Huichen Yang, Daniel Andresen, and William Hsu. Ensemble
prediction of job resources to improve system performance for slurm-based hpc
systems. In Practice and Experience in Advanced Research Computing, pages
1–8. 2021.

[39] Felippe Vieira Zacarias, Rajiv Nishtala, and Paul Carpenter. Contention-aware
application performance prediction for disaggregated memory systems. In Pro-
ceedings of the 17th ACM International Conference on Computing Frontiers,
pages 49–59, 2020.

[40] Felippe Vieira Zacarias, Paul Carpenter, and Vinicius Petrucci. Improving
hpc system throughput and response time using memory disaggregation. In
2021 IEEE 27th International Conference on Parallel and Distributed Systems
(ICPADS). IEEE, 2021.

[41] Felippe Vieira Zacarias, Paul Carpenter, and Vinicius Petrucci. Memory demands
in disaggregated HPC: How accurate do we need to be? In 2021 International
Workshop on Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems (PMBS), pages 1–6, Nov 2021.

[42] Felippe Vieira Zacarias, Paul Carpenter, and Vinicius Petrucci. Dynamic memory
provisioning on disaggregated hpc systems. [manuscript submitted for publication].
In International Symposium on Performance Analysis of Systems and Software
(ISPASS). IEEE, 2023.

[43] Yiannis Georgiou, Emmanuel Jeannot, Guillaume Mercier, and Adèle Villiermet.
Topology-aware resource management for hpc applications. In Proceedings of the
18th International Conference on Distributed Computing and Networking, pages
1–10, 2017.

[44] Yiannis Georgiou and Matthieu Hautreux. Evaluating scalability and efficiency
of the resource and job management system on large hpc clusters. In Workshop
on Job Scheduling Strategies for Parallel Processing, pages 134–156. Springer,
2012.

[45] Bo Wang, Zhiguang Chen, and Nong Xiao. A survey of system scheduling for
hpc and big data. In Proceedings of the 2020 4th International Conference on
High Performance Compilation, Computing and Communications, pages 178–183,
2020.

References 143

[46] Albert Reuther, Chansup Byun, William Arcand, David Bestor, Bill Bergeron,
Matthew Hubbell, Michael Jones, Peter Michaleas, Andrew Prout, Antonio Rosa,
et al. Scalable system scheduling for hpc and big data. Journal of Parallel and
Distributed Computing, 111:76–92, 2018.

[47] Robert L Henderson. Job scheduling under the portable batch system. In
Workshop on Job Scheduling Strategies for Parallel Processing, pages 279–294.
Springer, 1995.

[48] Brett Bode, David M Halstead, Ricky Kendall, Zhou Lei, and David Jackson.
The portable batch scheduler and the maui scheduler on linux clusters. In Annual
Linux Showcase & Conference, 2000.

[49] Songnian Zhou, Xiaohu Zheng, Jingwen Wang, and Pierre Delisle. Utopia: a load
sharing facility for large, heterogeneous distributed computer systems. Software:
practice and Experience, 23(12):1305–1336, 1993.

[50] Subramanian Kannan, Mark Roberts, Peter Mayes, Dave Brelsford, and Joseph F
Skovira. Workload management with loadleveler. IBM Redbooks, 2(2):58, 2001.

[51] Moab adaptive hpc suite. http://www.adaptivecomputing.com, 2022. Accessed:
2022-01-20.

[52] Garrick Staples. Torque resource manager. In Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, page 8. ACM, 2006.

[53] Pranav Joshi and Muda Rajesh Babu. Openlava: An open source scheduler for
high performance computing. In 2016 International Conference on Research
Advances in Integrated Navigation Systems (RAINS), pages 1–3. IEEE, 2016.

[54] SchedMD. Schedmd slurm development and supportg. https://slurm.schedmd.
com/overview.html, 2021. Accessed: 2021-01-21.

[55] Changyeon Jo, Hyunik Kim, Hexiang Geng, and Bernhard Egger. Rackmem:
a tailored caching layer for rack scale computing. In Proceedings of the ACM
International Conference on Parallel Architectures and Compilation Techniques,
pages 467–480, 2020.

[56] Gagandeep Panwar, Da Zhang, Yihan Pang, Mai Dahshan, Nathan DeBardeleben,
Binoy Ravindran, and Xun Jian. Quantifying memory underutilization in HPC
systems and using it to improve performance via architecture support. In
Proceedings of the 52nd Annual IEEE/ACM International Symposium on Mi-
croarchitecture, pages 821–835, 2019.

[57] BSC slurm simulator. https://github.com/BSC-RM/slurm_simulator, 2021.
Accessed: 2021-01-20.

http://www.adaptivecomputing.com
https://slurm.schedmd.com/overview.html
https://slurm.schedmd.com/overview.html
https://github.com/BSC-RM/slurm_simulator

References 144

[58] Steve J Chapin, Walfredo Cirne, Dror G Feitelson, James Patton Jones, Scott T
Leutenegger, Uwe Schwiegelshohn, Warren Smith, and David Talby. Benchmarks
and standards for the evaluation of parallel job schedulers. In Workshop on Job
Scheduling Strategies for Parallel Processing, pages 67–90. Springer, 1999.

[59] The standard workload format. https://www.cs.huji.ac.il/labs/parallel/workload/
swf.html, 2021. Accessed: 2021-01-20.

[60] Logs of real parallel workloads from production systems. https://www.cse.huji.
ac.il/labs/parallel/workload/logs.html. Accessed: 2021-01-20.

[61] SGI Altix UV 1000 Datasheet. https://cutt.ly/McVBAFS, 2021. Accessed:
2021-01-21.

[62] Bull Coherent Switch (BCS). https://cutt.ly/IcVVZt3, 2021. Accessed: 2021-01-
21.

[63] Maciej Bielski, Ilias Syrigos, Kostas Katrinis, Dimitris Syrivelis, Andrea Reale,
Dimitris Theodoropoulos, Nikolaos Alachiotis, D Pnevmatikatos, EH Pap, George
Zervas, et al. dReDBox: Materializing a full-stack rack-scale system prototype
of a next-generation disaggregated datacenter. In 2018 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pages 1093–1098. IEEE, 2018.

[64] EuroEXA project. H2020 project number 754337, 2009. Accessed: 2021-09-20.

[65] Stephen Van Doren. Hoti 2019: compute express link. In 2019 IEEE Symposium
on High-Performance Interconnects (HOTI), pages 18–18. IEEE, 2019.

[66] Debendra Das Sharma and Siamak Tavallaei. Compute express link 2.0 white
paper. Tech. Rep., 2020.

[67] Compute express link: The breakthrough cpu-to-device interconnect. https:
//www.computeexpresslink.org/, 2022. Accessed: 2022-01-20.

[68] Huaicheng Li, Daniel S Berger, Stanko Novakovic, Lisa Hsu, Dan Ernst, Pantea
Zardoshti, Monish Shah, Ishwar Agarwal, Mark Hill, Marcus Fontoura, et al.
First-generation memory disaggregation for cloud platforms. arXiv preprint
arXiv:2203.00241, 2022.

[69] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner, Niket Agar-
wal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowdhury, Shobhit Kanau-
jia, and Prakash Chauhan. Tpp: Transparent page placement for cxl-enabled
tiered-memory. In Proceedings of the 28th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, Volume
3, pages 742–755, 2023.

https://www.cs.huji.ac.il/labs/parallel/workload/swf.html
https://www.cs.huji.ac.il/labs/parallel/workload/swf.html
https://www.cse.huji.ac.il/labs/parallel/workload/logs.html
https://www.cse.huji.ac.il/labs/parallel/workload/logs.html
https://cutt.ly/McVBAFS
https://cutt.ly/IcVVZt3
https://www.computeexpresslink.org/
https://www.computeexpresslink.org/

References 145

[70] Walfredo Cirne and Francine Berman. A comprehensive model of the super-
computer workload. In Proceedings of the Fourth Annual IEEE International
Workshop on Workload Characterization. WWC-4 (Cat. No. 01EX538), pages
140–148. IEEE, 2001.

[71] Walfredo Cirne and Francine Berman. Using moldability to improve the perfor-
mance of supercomputer jobs. Journal of Parallel and Distributed Computing,
62(10):1571–1601, 2002.

[72] Li Ruan, Xiangrong Xu, Limin Xiao, Feng Yuan, Yin Li, and Dong Dai. A
comparative study of large-scale cluster workload traces via multiview analysis. In
2019 IEEE 21st International Conference on High Performance Computing and
Communications; IEEE 17th International Conference on Smart City; IEEE 5th
International Conference on Data Science and Systems (HPCC/SmartCity/DSS),
pages 397–404. IEEE, 2019.

[73] Dror G Feitelson, Dan Tsafrir, and David Krakov. Experience with using the
parallel workloads archive. Journal of Parallel and Distributed Computing,
74(10):2967–2982, 2014.

[74] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E Haque, Zhijing Gene Qin,
Steven Hand, Mor Harchol-Balter, and John Wilkes. Borg: the next generation.
In Proceedings of the fifteenth European conference on computer systems, pages
1–14, 2020.

[75] John Wilkes. Google cluster-usage traces v3. Technical report, Google Inc.,
Mountain View, CA, USA, April 2020. Posted at https://github.com/google/
cluster-data/blob/master/ClusterData2019.md.

[76] Memory statistics from open clusters - la-ur-19-28211. https://usrc.lanl.gov/
data/LA-UR-19-28211.php, 2022. Accessed: 2022-01-20.

[77] Lanl cts-1 grizzly - tundra extreme scale, xeon e5-2695v4 18c 2.1ghz, intel omni-
path. https://www.top500.org/system/178972, 2022. Accessed: 2022-01-20.

[78] Anthony Agelastos, Benjamin Allan, Jim Brandt, Paul Cassella, Jeremy Enos,
Joshi Fullop, Ann Gentile, Steve Monk, Nichamon Naksinehaboon, Jeff Ogden,
et al. The lightweight distributed metric service: a scalable infrastructure
for continuous monitoring of large scale computing systems and applications.
In SC’14: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 154–165. IEEE, 2014.

[79] Andreas De Blanche and Thomas Lundqvist. Addressing characterization methods
for memory contention aware co-scheduling. The Journal of Supercomputing,
71(4):1451–1483, 2015.

https://github.com/google/cluster-data/blob/master/ClusterData2019.md
https://github.com/google/cluster-data/blob/master/ClusterData2019.md
https://usrc.lanl.gov/data/LA-UR-19-28211.php
https://usrc.lanl.gov/data/LA-UR-19-28211.php
https://www.top500.org/system/178972

References 146

[80] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang. Bubble-flux: Precise
online qos management for increased utilization in warehouse scale computers.
In ACM SIGARCH, volume 41, pages 607–618. ACM, 2013.

[81] David Eklov, Nikos Nikoleris, David Black-Schaffer, and Erik Hagersten. Cache pi-
rating: Measuring the curse of the shared cache. In 2011 International Conference
on Parallel Processing, pages 165–175. IEEE, 2011.

[82] Jiacheng Zhao, Huimin Cui, Jingling Xue, Xiaobing Feng, Youliang Yan, and
Wensen Yang. An empirical model for predicting cross-core performance interfer-
ence on multicore processors. In Proceedings of the 22nd international conference
on Parallel architectures and compilation techniques, pages 201–212. IEEE Press,
2013.

[83] Jiacheng Zhao, Huimin Cui, Jingling Xue, and Xiaobing Feng. Predicting cross-
core performance interference on multicore processors with regression analysis.
IEEE Transactions on Parallel and Distributed Systems, 27(5):1443–1456, 2015.

[84] Marc Casas and Greg Bronevetsky. Evaluation of HPC applications’ memory
resource consumption via active measurement. IEEE Transactions on Parallel
and Distributed Systems, 27(9):2560–2573, 2015.

[85] Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, and Onur
Mutlu. MISE: Providing performance predictability and improving fairness in
shared main memory systems. In 2013 IEEE 19th International Symposium on
High Performance Computer Architecture (HPCA), pages 639–650. IEEE, 2013.

[86] Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and Onur
Mutlu. The application slowdown model: Quantifying and controlling the impact
of inter-application interference at shared caches and main memory. In Proceedings
of the 48th International Symposium on Microarchitecture, pages 62–75. ACM,
2015.

[87] Dongliang Xiong, Kai Huang, Xiaowen Jiang, and Xiaolang Yan. Providing
predictable performance via a slowdown estimation model. ACM Transactions
on Architecture and Code Optimization (TACO), 14(3):25, 2017.

[88] Yogesh D Barve, Shashank Shekhar, Ajay Dev Chhokra, Shweta Khare, Anir-
ban Bhattacharjee, Zhuangwei Kang, Hongyang Sun, and Aniruddha Gokhale.
Fecbench: A holistic interference-aware approach for application performance
modeling. arXiv preprint arXiv:1904.05833, 2019.

[89] Christina Delimitrou and Christos Kozyrakis. ibench: Quantifying interference
for datacenter applications. In 2013 IEEE international symposium on workload
characterization (IISWC), pages 23–33. IEEE, 2013.

References 147

[90] Hao Xu, Shasha Wen, Alfredo Gimenez, Todd Gamblin, and Xu Liu. DR-BW:
identifying bandwidth contention in numa architectures with supervised learning.
In 2017 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 367–376. IEEE, 2017.

[91] Daniel Molka, Robert Schöne, Daniel Hackenberg, and Wolfgang E Nagel. Detect-
ing memory-boundedness with hardware performance counters. In Proceedings of
the 8th ACM/SPEC on International Conference on Performance Engineering,
pages 27–38. ACM, 2017.

[92] Giovanni Farias, Francisco Brasileiro, Raquel Lopes, Marcus Carvalho, Fábio
Morais, and Daniel Turull. On the efficiency gains of using disaggregated hardware
to build warehouse-scale clusters. In 2017 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom), pages 239–246. IEEE,
2017.

[93] Wonsup Yoon, Jinyoung Oh, Jisu Ok, Sue Moon, and Youngjin Kwon. Dilos:
adding performance to paging-based memory disaggregation. In Proceedings of
the 12th ACM SIGOPS Asia-Pacific Workshop on Systems, pages 70–78, 2021.

[94] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy Ousterhout,
Marcos K Aguilera, Aurojit Panda, Sylvia Ratnasamy, and Scott Shenker. Can
far memory improve job throughput? In Proceedings of the Fifteenth European
Conference on Computer Systems, pages 1–16, 2020.

[95] Wenqi Cao and Ling Liu. Dynamic and transparent memory sharing for accelerat-
ing big data analytics workloads in virtualized cloud. In 2018 IEEE International
Conference on Big Data (Big Data), pages 191–200. IEEE, 2018.

[96] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang, and Yiying Zhang. Clio:
A hardware-software co-designed disaggregated memory system. In Proceedings of
the 27th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 417–433, 2022.

[97] Nikolaos D Kallimanis, Manolis Marazakis, and Manolis Skordalakis. Use-cases
for remote memory in the unimem architecture. In ExascaleHPC: the ExaNoDe,
ExaNeSt, EcoScale, and EuroEXA projects workshop at HiPEAC, Manchester,
2018.

[98] William Allcock, Bennett Bernardoni, Colleen Bertoni, Neil Getty, Joseph Insley,
Michael E Papka, Silvio Rizzi, and Brian Toonen. Ram as a network man-
aged resource. In 2018 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pages 99–106. IEEE, 2018.

[99] Alexandru Uta, Ana-Maria Oprescu, and Thilo Kielmann. Towards resource
disaggregation—memory scavenging for scientific workloads. In 2016 IEEE

References 148

International Conference on Cluster Computing (CLUSTER), pages 100–109.
IEEE, 2016.

[100] Youngeun Kwon and Minsoo Rhu. Beyond the memory wall: A case for memory-
centric hpc system for deep learning. In 2018 51st Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO), pages 148–161. IEEE,
2018.

[101] Qi Zhang, Ling Liu, Calton Pu, Wenqi Cao, and Semih Sahin. Efficient shared
memory orchestration towards demand driven memory slicing. In 2018 IEEE
38th International Conference on Distributed Computing Systems (ICDCS), pages
1212–1223. IEEE, 2018.

[102] Kwangwon Koh, Kangho Kim, Seunghyub Jeon, and Jaehyuk Huh. Disaggregated
cloud memory with elastic block management. IEEE Transactions on Computers,
68(1):39–52, 2018.

[103] Luis A Garrido and Paul Carpenter. Aggregating and managing memory across
computing nodes in cloud environments. In International Conference on High
Performance Computing, pages 642–652. Springer, 2017.

[104] Shouwei Chen, Wensheng Wang, Xueyang Wu, Zhen Fan, Kunwu Huang, Peiyu
Zhuang, Yue Li, Ivan Rodero, Manish Parashar, and Dennis Weng. Optimizing
performance and computing resource management of in-memory big data ana-
lytics with disaggregated persistent memory. In 19th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, CCGrid 2019, pages 21–30.
Institute of Electrical and Electronics Engineers Inc., 2019.

[105] Marcelo Amaral, Jordà Polo, David Carrera, Nelson Gonzalez, Chih-Chieh Yang,
Alessandro Morari, Bruce D’Amora, Alaa Youssef, and Malgorzata Steinder.
Drmaestro: orchestrating disaggregated resources on virtualized data-centers.
Journal of Cloud Computing, 10(1):1–20, 2021.

[106] Sergio Iserte, Rafael Mayo, Enrique S Quintana-Orti, and Antonio J Pena.
Dmrlib: Easy-coding and efficient resource management for job malleability.
IEEE Transactions on Computers, 70(9):1443–1457, 2020.

[107] Thaleia Dimitra Doudali, Sergey Blagodurov, Abhinav Vishnu, Sudhanva Gu-
rumurthi, and Ada Gavrilovska. Kleio: A hybrid memory page scheduler with
machine intelligence. In Proceedings of the 28th International Symposium on
High-Performance Parallel and Distributed Computing, pages 37–48, 2019.

[108] Andrea Borghesi, Andrea Bartolini, Michela Milano, and Luca Benini. Pricing
schemes for energy-efficient hpc systems: Design and exploration. The Inter-
national Journal of High Performance Computing Applications, 33(4):716–734,
2019.

References 149

[109] Partnership for Advanced Computing in Europe. https://prace-ri.eu/about/
introduction/, 2021. Accessed: 2021-01-20.

[110] Extreme science and engineering discovery environment. www.xsede.org, 2021.
Accessed: 2021-01-20.

[111] Innovative and novel computational impact on theory and experiment. https:
//www.doeleadershipcomputing.org/proposal/call-for-proposals/, 2021. Accessed:
2021-01-20.

[112] Alex D Breslow, Ananta Tiwari, Martin Schulz, Laura Carrington, Lingjia
Tang, and Jason Mars. Enabling fair pricing on hpc systems with node sharing.
In Proceedings of the international conference on high performance computing,
networking, storage and analysis, pages 1–12, 2013.

[113] Artan Mazrekaj, Isak Shabani, and Besmir Sejdiu. Pricing schemes in cloud
computing: an overview. International Journal of Advanced Computer Science
and Applications, 7(2):80–86, 2016.

[114] Aaqif Afzaal Abbasi, Almas Abbasi, Shahaboddin Shamshirband, An-
thony Theodore Chronopoulos, Valerio Persico, and Antonio Pescapè. Software-
defined cloud computing: A systematic review on latest trends and developments.
IEEE Access, 7:93294–93314, 2019.

[115] Opeyemi O Ajibola, Taisir EH El-Gorashi, and Jaafar MH Elmirghani. Energy
efficient placement of workloads in composable data center networks. Journal of
Lightwave Technology, 39(10):3037–3063, 2021.

[116] Sulav Malla and Ken Christensen. Hpc in the cloud: Performance comparison
of function as a service (faas) vs infrastructure as a service (iaas). Internet
Technology Letters, 3(1):e137, 2020.

[117] Yang Lu, Xianrong Zheng, Ling Li, and Li D Xu. Pricing the cloud: a qos-based
auction approach. Enterprise Information Systems, 14(3):334–351, 2020.

[118] Marco Ferretti and Luigi Santangelo. Cloud vs on-premise hpc: a model for
comprehensive cost assessment. Parallel Computing: Technology Trends, 36:69,
2020.

[119] Anna Pupykina and Giovanni Agosta. Survey of memory management techniques
for hpc and cloud computing. IEEE Access, 7:167351–167373, 2019.

[120] Intel Corporation. Intel® Xeon® processor E5-2600 product family uncore
performance monitoring guide. tech. rep., March 2012.

[121] Daniel Molka, Daniel Hackenberg, and Robert Schöne. Main memory and cache
performance of intel sandy bridge and amd bulldozer. In Proceedings of the
workshop on Memory Systems Performance and Correctness, pages 1–10, 2014.

https://prace-ri.eu/about/introduction/
https://prace-ri.eu/about/introduction/
www.xsede.org
https://www.doeleadershipcomputing.org/proposal/call-for-proposals/
https://www.doeleadershipcomputing.org/proposal/call-for-proposals/

References 150

[122] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The PARSEC
benchmark suite: Characterization and architectural implications. In PACT,
pages 72–81. ACM, 2008.

[123] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer,
Sang-Ha Lee, and Kevin Skadron. Rodinia: A benchmark suite for heterogeneous
computing. In IISWC, pages 44–54, Washington, DC, USA, 2009. IEEE.

[124] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum,
R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,
V. Venkatakrishnan, and S. K. Weeratunga. The nas parallel benchmarks:
Summary and preliminary results. In SC, pages 158–165, New York, NY, USA,
1991. ACM.

[125] Christos Sakalis, Carl Leonardsson, Stefanos Kaxiras, and Alberto Ros. Splash-3:
A properly synchronized benchmark suite for contemporary research. In ISPASS,
pages 101–111. IEEE, 2016.

[126] Andi Kleen. A numa api for linux. Novel Inc, 2005.

[127] Arnaldo Carvalho de Melo. The new linux’perf’tools.

[128] John D. McCalpin. Memory bandwidth and machine balance in current high per-
formance computers. IEEE Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter, pages 19–25, December 1995.

[129] Milan Radulovic, Rommel Sánchez Verdejo, Paul Carpenter, Petar Radojkovic,
Bruce Jacob, and Eduard Ayguadé. PROFET: Modeling system performance
and energy without simulating the CPU. In Abstracts of the 2019 SIGMETRIC-
S/Performance Joint International Conference on Measurement and Modeling of
Computer Systems, SIGMETRICS ’19, pages 71–72, New York, NY, USA, 2019.
ACM.

[130] BSC. Profet: Code for generating memory bandwidth load, for different read
traffic ratios and bandwidth intensity., 2019. Accessed: 2019-10-16.

[131] F.V. Zacarias, V. Petrucci, R. Nishtala, P. Carpenter, and D. Mossé. Intelligent
colocation of workloads for enhanced server efficiency. In 2019 28th International
Symposium on Computer Architecture and High Performance Computing (SBAC-
PAD), Oct 2019.

[132] Josué Feliu, Julio Sahuquillo, Salvador Petit, and Jose Duato. Perf&fair: A
progress-aware scheduler to enhance performance and fairness in SMT multicores.
IEEE Transactions on Computers, 66(5):905–911, 2016.

[133] Tirtha Pratim Bhattacharjee. Data Movement and Workload characterization:
Intel Sandy Bridge Core and Uncore PMU features, 2013.

References 151

[134] Zoltan Majo and Thomas R Gross. Memory system performance in a NUMA mul-
ticore multiprocessor. In Proceedings of the 4th Annual International Conference
on Systems and Storage, page 12. ACM, 2011.

[135] John D. McCalpin. Sc16 invited talk: Memory bandwidth and system balance in
hpc systems. https://sites.utexas.edu/jdm4372/tag/stream-benchmark/, 2019.
Accessed: 2019-09-18.

[136] Intel Corporation. Intel® 64 and IA-32 architectures software developer’s manual
combined volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D and 4, 2018.

[137] Emmanuel Kayode Akinshola Ogunshile. Viability of small-scale HPC cloud
infrastructures. In CLOSER, pages 275–286, 2018.

[138] Konstantin S Solnushkin. Saddle: A modular design automation framework
for cluster supercomputers and data centres. In International Supercomputing
Conference, pages 232–244. Springer, 2014.

[139] Konstantin S. Solnushkin. Automated design of torus networks. CoRR,
abs/1301.6180, 2013.

[140] Andy Turner and Simon McIntosh-Smith. A survey of application memory usage
on a national supercomputer: an analysis of memory requirements on archer. In
International Workshop on Performance Modeling, Benchmarking and Simulation
of High Performance Computer Systems, pages 250–260. Springer, 2017.

[141] Google cloud adds compute, memory-intensive vms. https://www.sdxcentral.com/
articles/news/google-cloud-adds-compute-memory-intensive-vms/2019/08/,
2022. Accessed: 2021-03-22.

[142] Urs Ramer. An iterative procedure for the polygonal approximation of plane
curves. Computer graphics and image processing, 1(3):244–256, 1972.

[143] David H Douglas and Thomas K Peucker. Algorithms for the reduction of
the number of points required to represent a digitized line or its caricature.
Cartographica: the international journal for geographic information and geovisu-
alization, 10(2):112–122, 1973.

[144] Disaggregated memory slurm simulator and allocation policy. https://github.
com/felippezacarias/slurm_simulator, 2021. Accessed: 2021-04-08.

https://sites.utexas.edu/jdm4372/tag/stream-benchmark/
https://www.sdxcentral.com/articles/news/google-cloud-adds-compute-memory-intensive-vms/2019/08/
https://www.sdxcentral.com/articles/news/google-cloud-adds-compute-memory-intensive-vms/2019/08/
https://github.com/felippezacarias/slurm_simulator
https://github.com/felippezacarias/slurm_simulator

Biographical Sketch 152

BIOGRAPHICAL SKETCH
Felippe Vieira Zacarias was born in Pojuca, Brazil. He received a Bachelor’s degree in
Information Systems from the State University of Bahia, Brazil in 2014 and a Master’s
degree in Computer Science from the Federal University of Bahia, Brazil in 2018.
Worked at SENAI CIMATEC Supercomputing Center developing technical-scientific
research on HPC. He also provided consultancy in innovation projects using HPC
technologies.

He began his doctoral studies at Universitat Politècnica de Catalunya (UPC) and
Barcelona Supercomputing Center (BSC), Spain where he worked under the graceful su-
pervision of Paul Carpenter (Senior Researcher), Vinícius Petrucci and Xavier Martorell
(Professor). His current research interests include high-performance computing, cluster
and disaggregated architectures, memory subsystem, and performance evaluation.

Felippe Vieira Zacariasis expected to receive a Doctor of Philosophy degree in
Computer Architecture in July 2023.

	Contents
	List of Figures
	List of Tables
	Acknowledgement
	Acronyms
	I Prologue
	1 Introduction
	1.1 Challenges and Contributions
	1.2 Outline of Thesis
	1.3 Publication List
	1.4 Artifact List

	2 Background
	2.1 Resource and Job Management System
	2.1.1 Slurm Resource Manager
	2.1.2 Slurm Simulator

	2.2 Disaggregated Memory
	2.3 Workload and Job Traces
	2.3.1 Standard Workload Format
	2.3.2 CIRNE Model
	2.3.3 Google Trace
	2.3.4 Grizzly Trace

	3 Related Work
	3.1 Performance Prediction Modelling
	3.2 Disaggregated Solutions
	3.3 Dynamic Memory Provisioning
	3.4 Summary of Disaggregated Related Works

	II Modelling Contention-Aware Performance Prediction Technique
	4 Slowdown Based Method
	4.1 Environment Setup
	4.2 Problem Definition: Global Memory Emulation
	4.3 Slowdown Method
	4.3.1 Single Node Approach
	4.3.2 Multi Node Approach
	4.3.3 Key Differences Compared with State-of-the-art and Sources of Error or Simplification

	4.4 Experimental Evaluation Single Node
	4.4.1 Performance Counters
	4.4.2 Application Characteristics
	4.4.3 Sensitivity Curves
	4.4.4 Prediction Error
	4.4.5 Comparison with Memgen

	4.5 Experimental Evaluation Multi Node
	4.6 Conclusion

	III Allocation and Scheduling in Disaggregated Memory Systems
	5 Infrastructure and Experimental Methodology
	5.1 Simulated System Configurations
	5.2 Workload Methodology
	5.2.1 Synthetic CIRNE Model
	5.2.2 Synthetic Model plus Google Trace
	5.2.3 Adapting Grizzly Trace

	6 Extending Slurm Simulator for Disaggregated Memory
	6.1 Resource Allocation for Disaggregated Memory Systems
	6.1.1 Job submission interface
	6.1.2 Supporting Memory Disaggregation
	6.1.3 Disaggregated Allocation Policy

	6.2 Contention Model and Disaggregated Integration into Slurm Simulator
	6.3 Evaluation
	6.3.1 System Throughput
	6.3.2 System Response Time
	6.3.3 CPU and Memory System Utilization
	6.3.4 Varying Local Memory Threshold
	6.3.5 Different Memory Allocation Designs
	6.3.6 Scheduling Overhead
	6.3.7 Constraining Memory Allocation

	6.4 Conclusion

	7 Memory Demands in Disaggregated HPC Systems
	7.1 Extending the Simulator with Memory Overestimation
	7.1.1 Determining the Effect on System Throughput
	7.1.2 Correlating Memory Overestimation and Response Time

	7.2 Results
	7.2.1 System Job Throughput
	7.2.2 System Job Response Time
	7.2.3 User Job Response Time

	7.3 Conclusion

	8 Dynamic Memory Provisioning on Disaggregated HPC Systems
	8.1 Dynamic Memory Allocation Policy
	8.2 Dynamic Memory Allocation in the BSC Slurm Simulator
	8.3 Allocation Policies
	8.4 Results
	8.4.1 System Throughput (Jobs per Second)
	8.4.2 Job Response Time
	8.4.3 Cost–Benefit Analysis
	8.4.4 Minimizing Memory to Achieve Defined Throughput
	8.4.5 System Utilization of Memory and CPU
	8.4.6 Effect of Overestimation on Individual Job Response Time
	8.4.7 System Throughput vs. Overestimation
	8.4.8 Initial Memory Provisioning
	8.4.9 Sharing of Memory Capacity in the System

	8.5 Conclusion

	IV Epilogue
	9 Conclusion
	9.1 Future Work

	Appendix A Sensitivity Curves

	V Bibliography
	References

