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—— Abstract

This talk will present recent advances in extending OmpSs-2 to distributed-memory systems,
highlighting three contributions and the associated challenges. OmpSs-2@Cluster employs a common
address space and weak accesses to support concurrent task creation and dataflow execution across
nodes. Achieving good performance and scalability on 16 to 32 nodes requires detailed performance
analysis together with a set of optimizations and runtime techniques, which I will outline in the talk.
Second, I will describe how task offloading, in combination with BSC’s Dynamic Load Balancing
(DLB), enables OmpSs-2@QCluster to mitigate load imbalance in MPI + OmpSs-2 programs with
minimal application changes. Third, I will explain how the runtime can exploit the iterative structure
of certain task dependency graphs to precompute communications and execute iterative regions
efficiently, yielding performance and scalability comparable to state-of-the-art asynchronous MPI+X.
Together, these results indicate that distributed tasking can combine productivity, adaptability, and
high performance in modern HPC applications.
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1 Introduction

Task-based programming has become a powerful abstraction for expressing parallelism and
managing complexity in modern HPC, and it is increasingly accepted for node-level parallelism.
Tasks were introduced in OpenMP 3.0 in 2008 and substantially strengthened in OpenMP 4.0
(2013) with explicit task dependencies, enabling dependency-driven asynchronous execution.
Later OpenMP revisions added more advanced tasking capabilities, e.g. taskgroups, task
reductions and detached tasks, and improved the integration with accelerators. Task-based
execution is also widely used in libraries and runtimes such as Intel Threading Building
Blocks (TBB) [16] and in systems including Cilk-derived frameworks, HPX, StarPU [2],
PaRSEC [7, 12], Legion [6] and OmpSs [10].

Task-based approaches have likewise proven successful in workflow systems such as
COMPSs [13] and Pegasus [9], where tasks naturally correspond to coarse-grained units of
work and communication costs can be amortized over longer execution times. Nevertheless,
despite over fifteen years of research and clear benefits at both the finest scale (node-level paral-
lelism) and the coarsest scale (workflows), task-based programming has not displaced message
passing in the intermediate regime of distributed HPC applications. In this setting, the over-
heads of task graph management, dependency tracking and data versioning can become prohib-
itive for fine- to medium-grained tasks on distributed memory, limiting scalability. Moreover,
dynamic scheduling and implicit communication can reduce performance predictability,
leading to performance anomalies and unexpected bottlenecks that are difficult to diagnose.

OmpSs-2@Cluster [1, 5] is a research platform for exploring distributed task-based
execution at a moderate granularity, building on the refined semantics of OmpSs-2 [4] and a
runtime designed for scalable cluster execution. It evolves earlier OmpSs@Cluster work by
Bueno et al. [8] and incorporates lessons from earlier efforts in distributed task execution.
While retaining tasks and dependencies as the core abstraction, OmpSs-2@Cluster mitigates
the scalability challenges that arise when task creation, dependency tracking and data
management span multiple nodes.

A key design element is support for weak accesses (also known as weak dependencies),
as introduced by OmpSs-2 [15]. A weak access indicates that the task does not directly
access the data region but its nested subtasks may do so. This allows a parent task to
begin execution before the completion of any data transfers required by its children, thereby
avoiding unnecessary synchronization and overlapping communication with subtask creation
and related dependency management. Weak accesses are a mechanism that supports grouping
of tasks into a coarser-grained unit to be offloaded to another node. OmpSs-2@QCluster also
employs fragmented region dependencies to interoperate between coarse-grained accesses
passed among nodes and fine-grained accesses manipulated on each node. Together these
mechanisms aim to make task-based execution more scalable on distributed-memory clusters.

The remainder of this extended abstract provides an overview of the substantial effort
devoted over the years to performance analysis and optimizations in OmpSs-2@QCluster. It
also discusses the opportunities, challenges and recent progress along two complementary dir-
ections: first, inter-node load balancing in MPI + OmpSs-2 programs; and second, exploiting
iterative program structure to amortize the costs of task graph construction and management.

2 Runtime and optimizations

OmpSs-2@QCluster uses the same compiler as regular OmpSs-2 and relies on an open-source
fork of the Nanos6 runtime known as Nanos6@Cluster. Early development of Nanos6@Cluster
was carried out in a branch of the Nanos6 code base, with regular upstreaming of changes.
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Figure 1 OmpSs-2Q@QCluster architecture: each rank is a peer and main runs as a task on Rank0.
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Figure 2 Performance impact of key optimizations on MareNostrum 4. Reproduced from [14].

This approach was later abandoned, as the significantly higher maturity of Nanos6 and
its requirement for stable shared-memory—oriented internal interfaces made it difficult to
accommodate the experimental and rapidly evolving features needed for distributed execution,
some of which involved intrusive changes to these internal APIs. Moreover, maintaining a
separate fork allowed the small research-focused OmpSs-2@QCluster team to delay certain
technical transitions, most notably the migration from the legacy source-to-source Mercurium
compiler to LLVM, in order to concentrate on core runtime development.

As shown in Figure 1, each MPI rank runs an independent instance of Nanos6@Cluster,
with all instances communicating as peers via MPI. To simplify data management across
ranks, each process establishes an identical virtual address space using mmap, allowing tasks
to refer to the same memory addresses regardless of the rank on which they execute.

While the basic mechanism for task offloading was relatively straightforward to implement
and completed within a few months, achieving satisfactory performance required substantial
runtime optimizations developed over several years. Figure 2 illustrates the cumulative
impact of these optimizations on performance. As the figure suggests, different benchmarks
benefit from different subsets of optimizations. In practice, performance was often sensitive
to low-level implementation details, and any such cumulative view depends on the order
in which optimizations are introduced in the figure, which is to some extent arbitrary and
chosen for explanatory purposes.

The main optimizations implemented in Nanos6@Cluster include WritelD, a form of data
versioning used to avoid redundant data transfers; LeaderThread, which dedicates a thread to
handle incoming MPI messages such as newly offloaded tasks and to process message comple-
tions; and Namespace, which eliminates unnecessary host-mediated messages between consec-
utive tasks offloaded to the same rank. Additional improvements include message aggregation,
which coalesces control messages when multiple accesses become ready, and multiple low-
priority Helper tasks that assist with message handling and runtime progress when compute re-
sources would otherwise be idle. Together, these optimizations substantially reduce overheads
and enable scaling to approximately 16-32 nodes for the evaluated small-scale benchmarks.
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Node 0 Node 1 Node 2

Task offload
__________ m,,,,,,,,,,,, Helper

Application MPr

Apprank 0

(main)

----------
~~~~~~~~~~~~ ----------

Figure 3 Architecture of MPI+OmpSs-2@Cluster. Application ranks (appranks) communicate
via MPI and helper ranks on some other nodes can execute tasks from heavily loaded appranks.

Apprank 2

(main)

3 Dynamic Load Balancing (DLB)

Load imbalance is a long-standing source of inefficiency in high-performance computing. It
is commonly addressed at application level through techniques such as mesh partitioning,
domain decomposition, or manual work redistribution, often guided by problem-specific heur-
istics. While effective, these approaches entangle load-balancing concerns with application
logic and may require substantial code refactoring, complicating development and long-term
maintenance. Although OmpSs-2@QCluster does not scale sufficiently to serve as the primary
distributed-memory programming model for large-scale HPC applications, it is well suited
to addressing residual load imbalance in hybrid MPI4+OmpSs-2 programs. In this context,
OmpSs-2@QCluster complements static partitioning by redistributing work at runtime.

The basic approach is illustrated in Figure 3. Each MPI rank visible to the application
(hereafter referred to as an application rank or apprank) is shown in a different colour, with a
single apprank per node in this example. To mitigate load imbalance in an apprank, additional
helper ranks are deployed on a subset of other nodes. These helper ranks are full runtime
instances that execute tasks offloaded from a given apprank within a dedicated process, provid-
ing isolation between appranks while enabling dynamic redistribution of work at runtime.

Load balancing is done at three levels. First, at coarse granularity, helper ranks are
activated based on a prediction of upcoming load imbalance. The prediction is calculated
by the runtime and passed to an external solver, which determines the minimum number
of helpers required for each apprank and allocates these helpers to lightly-loaded nodes. The
decisions are implemented by the runtime. Second, at medium granularity, the runtime
employs BSC’s Dynamic Load Balancing (DLB) [11] library to assign CPU cores to the
appranks and active helpers on the same node. Finally, at fine granularity, the runtime
instances dynamically offload tasks to helper ranks in order to fully utilize the allocated cores.

4 Distributed Taskiter

The main limits to the scalability of OmpSs-2@Cluster arise from the sequential creation of
tasks and computation of their dependencies on Rank 0, as well as the centralized resolution
of top-level task dependencies on the same rank. These bottlenecks are partially mitigated
through strong support for task nesting, which increases effective task granularity, and
through the Namespace optimization, which reduces the need for centralized dependency
management. However, these mechanisms have largely been pushed to their practical limits
within the current runtime design. A complementary approach is therefore to exploit struc-
tural regularities in the task graph itself, under programmer direction, enabling substantial
reductions in the cost of task creation and dependency management.

Many scientific applications employ iterative methods or multi-step simulations in which
the same directed acyclic task graph is executed repeatedly at each timestep or iteration.
To address this common pattern, the taskiter construct was proposed in 2023 [3]. A loop
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can be annotated with taskiter provided that each iteration generates the same top-level
dependency graph and the program remains valid if the code inside the loop body but outside
any task is executed just once. The runtime instantiates the tasks once and represents the
repeated execution of this acyclic structure as a cyclic task graph across iterations.
Distributed taskiter [18] extends this concept to OmpSs-2@Cluster. When the runtime
encounters a loop annotated with taskiter, the loop is offloaded to all ranks, each of which
locally instantiates the full task dependency graph. The runtime then partitions this cyclic
graph across nodes, and each rank precomputes the MPI transfers in which it participates.
Compared with MPI + OmpSs-2, the only overhead is the one-time initialization cost,
after which the loop body is executed without any control messages. By integrating MPI
communications directly into the application’s task graph, distributed taskiter naturally
overlaps computation and communication. Experimental results show that this approach
achieves throughput matching or exceeding that of MPI 4+ OpenMP. In some cases, for example
3D wave parallelism in the Gauss—Seidel heat equation, the asynchronous tasking approach
exposes substantially more parallelism than fork—join MPI + OpenMP, and distributed
taskiter achieves performance on par with state-of-the-art TAMPI [17] + OmpSs-2 (see [18]).

5 Conclusions

While task-based programming has proven effective at node level and workflow scale, our
experience with OmpSs-2@QCluster confirms that extending fine-grained task graphs to dis-
tributed memory quickly encounters scalability limits related to centralized task creation and
dependency management. Addressing these issues required substantial runtime engineering
effort and a sequence of optimizations to enable practical scalability to tens of nodes.

The paper highlights two complementary directions in which distributed tasking provides
tangible benefits. First, OmpSs-2@QCluster can be used selectively to mitigate residual load
imbalance in hybrid MPI+OmpSs-2 applications. By combining task offloading with BSC’s
DLB library, our approach improves resource utilization with minimal disruption to existing
application structure. Second, for applications with regular iterative structure, distributed
taskiter demonstrates that exposing and exploiting task-graph regularity can fundamentally
reduce runtime overheads. Similar ideas may apply to other kinds of task graph structure.

Overall, these results suggest that distributed tasking is most effective when applied
judiciously, either as a targeted mechanism to address specific inefficiencies such as load
imbalance, or in conjunction with programmer-provided structure that enables the runtime
to avoid repeated control overheads. While OmpSs-2@QCluster cannot replace MPI as the
dominant distributed-memory programming model for large-scale HPC, it demonstrates that
task-based abstractions can deliver productivity, adaptability, and competitive performance
when their limitations are explicitly acknowledged and addressed.
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