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Abstract12

This talk will present recent advances in extending OmpSs-2 to distributed-memory systems,13

highlighting three contributions and the associated challenges. OmpSs-2@Cluster employs a common14

address space and weak accesses to support concurrent task creation and dataflow execution across15

nodes. Achieving good performance and scalability on 16 to 32 nodes requires detailed performance16

analysis together with a set of optimizations and runtime techniques, which I will outline in the talk.17

Second, I will describe how task offloading, in combination with BSC’s Dynamic Load Balancing18

(DLB), enables OmpSs-2@Cluster to mitigate load imbalance in MPI + OmpSs-2 programs with19

minimal application changes. Third, I will explain how the runtime can exploit the iterative structure20

of certain task dependency graphs to precompute communications and execute iterative regions21

efficiently, yielding performance and scalability comparable to state-of-the-art asynchronous MPI+X.22

Together, these results indicate that distributed tasking can combine productivity, adaptability, and23

high performance in modern HPC applications.24

2012 ACM Subject Classification Computing methodologies → Parallel computing methodologies;25

Software and its engineering → Parallel programming languages; Software and its engineering26

→ Distributed programming languages; Software and its engineering → Runtime environments;27

Computer systems organization → Distributed architectures28

Keywords and phrases Task-based programming, distributed-memory clusters, programming models,29

runtime systems, task scheduling, data dependency management, load balancing, asynchronous30

communication31

Digital Object Identifier 10.4230/OASIcs.PARMA-DITAM.2026.832

Category Invited Talk33

Funding This work is funded by the Barcelona Zettascale Laboratory (REGAGE22e00058408992),34

backed by the Spanish Ministry for Digital Transformation and of Public Services, within the35

framework of the Recovery, Transformation, and Resilience Plan - funded by the European Union -36

NextGenerationEU. It is also supported by the Spanish State Research Agency - Ministry of Science37

and Innovation under contract PID2019-107255GB-C21/MCIN/AEI/10.13039/501100011033 and38

Ramon y Cajal fellowship RYC2018-025628-I/MCIN/AEI/10.13039/501100011033 and by “ESF39

Investing in your future”, as well as by the Generalitat de Catalunya (2017-SGR-1414).40

© Paul Carpenter, Omar Shaaban, Juliette Fournis d’Albiat, and Isabel Piedrahita;
licensed under Creative Commons License CC-BY 4.0

17th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and
15th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM
2026).
Editors: Davide Baroffio, Paola Busia, Lev Denisov, and Nitin Shukla; Article No. 8; pp. 8:1–8:6

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:paul.carpenter@bsc.es
https://orcid.org/0000-0002-9392-0521
mailto:omar.ibrahim@bsc.es
https://orcid.org/0000-0003-4410-5317
mailto:juliette.fournis@bsc.es
https://orcid.org/0009-0005-6575-6989
mailto:isabel.piedrahita@bsc.es
https://orcid.org/0009-0003-6106-6978
https://doi.org/10.4230/OASIcs.PARMA-DITAM.2026.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


8:2 Distributed task execution: Opportunities, challenges ... from OmpSs-2@Cluster

1 Introduction41

Task-based programming has become a powerful abstraction for expressing parallelism and42

managing complexity in modern HPC, and it is increasingly accepted for node-level parallelism.43

Tasks were introduced in OpenMP 3.0 in 2008 and substantially strengthened in OpenMP 4.044

(2013) with explicit task dependencies, enabling dependency-driven asynchronous execution.45

Later OpenMP revisions added more advanced tasking capabilities, e.g. taskgroups, task46

reductions and detached tasks, and improved the integration with accelerators. Task-based47

execution is also widely used in libraries and runtimes such as Intel Threading Building48

Blocks (TBB) [16] and in systems including Cilk-derived frameworks, HPX, StarPU [2],49

PaRSEC [7, 12], Legion [6] and OmpSs [10].50

Task-based approaches have likewise proven successful in workflow systems such as51

COMPSs [13] and Pegasus [9], where tasks naturally correspond to coarse-grained units of52

work and communication costs can be amortized over longer execution times. Nevertheless,53

despite over fifteen years of research and clear benefits at both the finest scale (node-level paral-54

lelism) and the coarsest scale (workflows), task-based programming has not displaced message55

passing in the intermediate regime of distributed HPC applications. In this setting, the over-56

heads of task graph management, dependency tracking and data versioning can become prohib-57

itive for fine- to medium-grained tasks on distributed memory, limiting scalability. Moreover,58

dynamic scheduling and implicit communication can reduce performance predictability,59

leading to performance anomalies and unexpected bottlenecks that are difficult to diagnose.60

OmpSs-2@Cluster [1, 5] is a research platform for exploring distributed task-based61

execution at a moderate granularity, building on the refined semantics of OmpSs-2 [4] and a62

runtime designed for scalable cluster execution. It evolves earlier OmpSs@Cluster work by63

Bueno et al. [8] and incorporates lessons from earlier efforts in distributed task execution.64

While retaining tasks and dependencies as the core abstraction, OmpSs-2@Cluster mitigates65

the scalability challenges that arise when task creation, dependency tracking and data66

management span multiple nodes.67

A key design element is support for weak accesses (also known as weak dependencies),68

as introduced by OmpSs-2 [15]. A weak access indicates that the task does not directly69

access the data region but its nested subtasks may do so. This allows a parent task to70

begin execution before the completion of any data transfers required by its children, thereby71

avoiding unnecessary synchronization and overlapping communication with subtask creation72

and related dependency management. Weak accesses are a mechanism that supports grouping73

of tasks into a coarser-grained unit to be offloaded to another node. OmpSs-2@Cluster also74

employs fragmented region dependencies to interoperate between coarse-grained accesses75

passed among nodes and fine-grained accesses manipulated on each node. Together these76

mechanisms aim to make task-based execution more scalable on distributed-memory clusters.77

The remainder of this extended abstract provides an overview of the substantial effort78

devoted over the years to performance analysis and optimizations in OmpSs-2@Cluster. It79

also discusses the opportunities, challenges and recent progress along two complementary dir-80

ections: first, inter-node load balancing in MPI + OmpSs-2 programs; and second, exploiting81

iterative program structure to amortize the costs of task graph construction and management.82

2 Runtime and optimizations83

OmpSs-2@Cluster uses the same compiler as regular OmpSs-2 and relies on an open-source84

fork of the Nanos6 runtime known as Nanos6@Cluster. Early development of Nanos6@Cluster85

was carried out in a branch of the Nanos6 code base, with regular upstreaming of changes.86
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Figure 1 OmpSs-2@Cluster architecture: each rank is a peer and main runs as a task on Rank 0.

weak scaling results would, of course show better scalability.

3.9.6 Performance impact of the multiple optimizations

This section compares the influence and impact of the main 5 optimizations described in Section 3.6

for the optimized version of the benchmarks described in Section 3.8.2. The impact is di↵erent

for every benchmark depending on the problem type, data flow, task granularity and application

regularity.

For these benchmarks, all the optimizations implemented in the runtime were disabled and

added in the same order they were implemented one after the other. The e↵ect of every optimization

is not lineal respect to the others because some optimization enhances others (i.e. writeID and

namespace) while some others address similar problems with di↵erent approaches (i.e. Message

aggregation and Message handler helpers).
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Figure 3.22: Performance impact of the di↵erent optimizations in matmul benchmark. Matrix dimension
16384⇥16384.

Figure 3.22 shows that writeID is the most important optimization for matmul. As there are

not communications between iterations and the tasks are coarse-grained, then the main source of

ine�ciency exposed in matmul is the redundant data transfers addressed and solved with writeID

optimization as explained in Section 3.6.2. Most of the other optimizations have a very limited

impact on performance for matmul because they solve delays and latency issues associated with

communications not exposed by matmul as explained in Section 3.9.1.

On the other hand, matvec is more influenced by communication optimizations as shown in

Figure 3.23.

• Without optimizations (yellow), the scalability is negative.

• Up to 8 nodes the WriteID (green) and namespace (violet) are the most important optimiza-

tions. This is expected because the namespace optimization addresses the main new issue

added by matvec, which is the small task granularity.

• For 32 nodes, the Leader Thread (blue) and the Message Handler Helpers (red) become more

important because the amount of work per iteration and node is very small, and handling the

control messages becomes more important.
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(a) Matrix–matrix multiplication 16384 × 16384
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Figure 3.23: Performance impact of the di↵erent optimizations in matvec benchmark. Matrix Dimension
32768⇥32768
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Figure 3.24: Performance impact of the di↵erent optimizations in Jacobi benchmark. Matrix Dimension
32768⇥32768

On the other hand, Jacobi is specially benefited by the WriteId and the Leader thread for any

number of nodes according to Figure 3.24. This is expected because Jacobi is especially intense in

communications, as explained in Section 3.9.3. An interesting detail is that Figure 3.24 does not

show any important improvement of using Message aggregation for Jacobi even though it is very

intense in communications; the main reason for this is that Jacobi uses the wait clause to inhibit

the early release (see: Section 3.3.6) which allows OmpSs-2@Cluster unfragment the release access

before sending the messages.

Finally Figure 3.25 show some improvements with all the optimizations except for the helper

threads. While Cholesky perform multiple communications during the execution, those are not

so intense respecting to the order of the computations and the helper threads may start some

communications to satisfy work in remote nodes while more critical work is pending in the local

one. The such bad impact is actually reduced on 32 processes mainly because the work per node

is smaller, and the impact of temporarily using some threads become negligible.

3.9.7 Performance impact of namespace propagation

As explained in Section 3.6.1, the namespace propagation benefits only the tasks o✏oaded in

advance generally weak tasks, by reducing latency and unnecessary messages.

Figure 3.26 shows impact of removing the namespace propagation and keep all the other opti-
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(b) Matrix–vector multiplication 32768 × 32768
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Figure 3.23: Performance impact of the di↵erent optimizations in matvec benchmark. Matrix Dimension
32768⇥32768
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Figure 3.24: Performance impact of the di↵erent optimizations in Jacobi benchmark. Matrix Dimension
32768⇥32768

On the other hand, Jacobi is specially benefited by the WriteId and the Leader thread for any

number of nodes according to Figure 3.24. This is expected because Jacobi is especially intense in

communications, as explained in Section 3.9.3. An interesting detail is that Figure 3.24 does not

show any important improvement of using Message aggregation for Jacobi even though it is very

intense in communications; the main reason for this is that Jacobi uses the wait clause to inhibit

the early release (see: Section 3.3.6) which allows OmpSs-2@Cluster unfragment the release access

before sending the messages.

Finally Figure 3.25 show some improvements with all the optimizations except for the helper

threads. While Cholesky perform multiple communications during the execution, those are not

so intense respecting to the order of the computations and the helper threads may start some

communications to satisfy work in remote nodes while more critical work is pending in the local

one. The such bad impact is actually reduced on 32 processes mainly because the work per node

is smaller, and the impact of temporarily using some threads become negligible.

3.9.7 Performance impact of namespace propagation

As explained in Section 3.6.1, the namespace propagation benefits only the tasks o✏oaded in

advance generally weak tasks, by reducing latency and unnecessary messages.

Figure 3.26 shows impact of removing the namespace propagation and keep all the other opti-
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(c) Jacobi benchmark 32768 × 32768
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Figure 3.25: Performance impact of the di↵erent optimizations in Cholesky benchmark. Matrix Dimension
32768⇥32768
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Figure 3.26: Namespace impact on strong scalability for matmul and matvec weak nested versions.

mizations enabled in matmul (see: Figure 3.13b) and matvec (see Figure 3.15b).

In matmul (Figure 3.26b), there is no appreciable di↵erence because the task size is much larger

than the rest of the overhead, even with 32 nodes (64 processes).

On the contrary, matvec (Figure 3.26b) shows a benefit of 25% in performance on 32 nodes.

The di↵erence is negligible with less than 8 nodes because the relation between computation and

overhead is not critical, and the runtime is capable to overlap both.

This section does not include a similar comparison for the Jacobi benchmark because the names-

pace propagation is negligible compared with the rest of the communication overhead. And the

results in Figure 3.24 prove that Jacobi does not benefit from namespace propagation.

Similar to Figure 3.26; Figure 3.27 compares the namespace performance benefit but this time

for the Cholesky versions with weak tasks. Figure 3.27a shows that the weak version of the cholesky

benchmark is unable to take a significant advantage of the namespace propagation in spite of having

weak tasks.

On the other hand, the optimized version (Figure 3.27b) gets a 15% of improvements on 16

nodes from namespace propagation by just modifying and reordering the initial code.
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(d) Cholesky factorization 32768 × 32768

Figure 2 Performance impact of key optimizations on MareNostrum 4. Reproduced from [14].

This approach was later abandoned, as the significantly higher maturity of Nanos6 and87

its requirement for stable shared-memory–oriented internal interfaces made it difficult to88

accommodate the experimental and rapidly evolving features needed for distributed execution,89

some of which involved intrusive changes to these internal APIs. Moreover, maintaining a90

separate fork allowed the small research-focused OmpSs-2@Cluster team to delay certain91

technical transitions, most notably the migration from the legacy source-to-source Mercurium92

compiler to LLVM, in order to concentrate on core runtime development.93

As shown in Figure 1, each MPI rank runs an independent instance of Nanos6@Cluster,94

with all instances communicating as peers via MPI. To simplify data management across95

ranks, each process establishes an identical virtual address space using mmap, allowing tasks96

to refer to the same memory addresses regardless of the rank on which they execute.97

While the basic mechanism for task offloading was relatively straightforward to implement98

and completed within a few months, achieving satisfactory performance required substantial99

runtime optimizations developed over several years. Figure 2 illustrates the cumulative100

impact of these optimizations on performance. As the figure suggests, different benchmarks101

benefit from different subsets of optimizations. In practice, performance was often sensitive102

to low-level implementation details, and any such cumulative view depends on the order103

in which optimizations are introduced in the figure, which is to some extent arbitrary and104

chosen for explanatory purposes.105

The main optimizations implemented in Nanos6@Cluster include WriteID, a form of data106

versioning used to avoid redundant data transfers; LeaderThread, which dedicates a thread to107

handle incoming MPI messages such as newly offloaded tasks and to process message comple-108

tions; and Namespace, which eliminates unnecessary host-mediated messages between consec-109

utive tasks offloaded to the same rank. Additional improvements include message aggregation,110

which coalesces control messages when multiple accesses become ready, and multiple low-111

priority Helper tasks that assist with message handling and runtime progress when compute re-112

sources would otherwise be idle. Together, these optimizations substantially reduce overheads113

and enable scaling to approximately 16–32 nodes for the evaluated small-scale benchmarks.114

PARMA-DITAM 2026
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Application MPI
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Apprank 0

(main)
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Helper
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Helper
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Figure 3 Architecture of MPI+OmpSs-2@Cluster. Application ranks (appranks) communicate
via MPI and helper ranks on some other nodes can execute tasks from heavily loaded appranks.

3 Dynamic Load Balancing (DLB)115

Load imbalance is a long-standing source of inefficiency in high-performance computing. It116

is commonly addressed at application level through techniques such as mesh partitioning,117

domain decomposition, or manual work redistribution, often guided by problem-specific heur-118

istics. While effective, these approaches entangle load-balancing concerns with application119

logic and may require substantial code refactoring, complicating development and long-term120

maintenance. Although OmpSs-2@Cluster does not scale sufficiently to serve as the primary121

distributed-memory programming model for large-scale HPC applications, it is well suited122

to addressing residual load imbalance in hybrid MPI+OmpSs-2 programs. In this context,123

OmpSs-2@Cluster complements static partitioning by redistributing work at runtime.124

The basic approach is illustrated in Figure 3. Each MPI rank visible to the application125

(hereafter referred to as an application rank or apprank) is shown in a different colour, with a126

single apprank per node in this example. To mitigate load imbalance in an apprank, additional127

helper ranks are deployed on a subset of other nodes. These helper ranks are full runtime128

instances that execute tasks offloaded from a given apprank within a dedicated process, provid-129

ing isolation between appranks while enabling dynamic redistribution of work at runtime.130

Load balancing is done at three levels. First, at coarse granularity, helper ranks are131

activated based on a prediction of upcoming load imbalance. The prediction is calculated132

by the runtime and passed to an external solver, which determines the minimum number133

of helpers required for each apprank and allocates these helpers to lightly-loaded nodes. The134

decisions are implemented by the runtime. Second, at medium granularity, the runtime135

employs BSC’s Dynamic Load Balancing (DLB) [11] library to assign CPU cores to the136

appranks and active helpers on the same node. Finally, at fine granularity, the runtime137

instances dynamically offload tasks to helper ranks in order to fully utilize the allocated cores.138

4 Distributed Taskiter139

The main limits to the scalability of OmpSs-2@Cluster arise from the sequential creation of140

tasks and computation of their dependencies on Rank 0, as well as the centralized resolution141

of top-level task dependencies on the same rank. These bottlenecks are partially mitigated142

through strong support for task nesting, which increases effective task granularity, and143

through the Namespace optimization, which reduces the need for centralized dependency144

management. However, these mechanisms have largely been pushed to their practical limits145

within the current runtime design. A complementary approach is therefore to exploit struc-146

tural regularities in the task graph itself, under programmer direction, enabling substantial147

reductions in the cost of task creation and dependency management.148

Many scientific applications employ iterative methods or multi-step simulations in which149

the same directed acyclic task graph is executed repeatedly at each timestep or iteration.150

To address this common pattern, the taskiter construct was proposed in 2023 [3]. A loop151
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can be annotated with taskiter provided that each iteration generates the same top-level152

dependency graph and the program remains valid if the code inside the loop body but outside153

any task is executed just once. The runtime instantiates the tasks once and represents the154

repeated execution of this acyclic structure as a cyclic task graph across iterations.155

Distributed taskiter [18] extends this concept to OmpSs-2@Cluster. When the runtime156

encounters a loop annotated with taskiter, the loop is offloaded to all ranks, each of which157

locally instantiates the full task dependency graph. The runtime then partitions this cyclic158

graph across nodes, and each rank precomputes the MPI transfers in which it participates.159

Compared with MPI + OmpSs-2, the only overhead is the one-time initialization cost,160

after which the loop body is executed without any control messages. By integrating MPI161

communications directly into the application’s task graph, distributed taskiter naturally162

overlaps computation and communication. Experimental results show that this approach163

achieves throughput matching or exceeding that of MPI + OpenMP. In some cases, for example164

3D wave parallelism in the Gauss–Seidel heat equation, the asynchronous tasking approach165

exposes substantially more parallelism than fork–join MPI + OpenMP, and distributed166

taskiter achieves performance on par with state-of-the-art TAMPI [17] + OmpSs-2 (see [18]).167

5 Conclusions168

While task-based programming has proven effective at node level and workflow scale, our169

experience with OmpSs-2@Cluster confirms that extending fine-grained task graphs to dis-170

tributed memory quickly encounters scalability limits related to centralized task creation and171

dependency management. Addressing these issues required substantial runtime engineering172

effort and a sequence of optimizations to enable practical scalability to tens of nodes.173

The paper highlights two complementary directions in which distributed tasking provides174

tangible benefits. First, OmpSs-2@Cluster can be used selectively to mitigate residual load175

imbalance in hybrid MPI+OmpSs-2 applications. By combining task offloading with BSC’s176

DLB library, our approach improves resource utilization with minimal disruption to existing177

application structure. Second, for applications with regular iterative structure, distributed178

taskiter demonstrates that exposing and exploiting task-graph regularity can fundamentally179

reduce runtime overheads. Similar ideas may apply to other kinds of task graph structure.180

Overall, these results suggest that distributed tasking is most effective when applied181

judiciously, either as a targeted mechanism to address specific inefficiencies such as load182

imbalance, or in conjunction with programmer-provided structure that enables the runtime183

to avoid repeated control overheads. While OmpSs-2@Cluster cannot replace MPI as the184

dominant distributed-memory programming model for large-scale HPC, it demonstrates that185

task-based abstractions can deliver productivity, adaptability, and competitive performance186

when their limitations are explicitly acknowledged and addressed.187
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